
7 A0A103 750 RENSSELAER POLYTECHNIC INST TROY NY DEPT OF MATHEMAT--ETC F/6 9/2
AN ATTRIBUTED LL(1 COMPILATION OF PASCAL INTO THE LAM4OA-CALCU--ETC(U)
JUN Al E KALTOFEN, S K ABOALI N00OSN-75-C-1026

UNCLASSIFIED RPI-CS-8103

777:7:;

4WD

Ovs T E C

'j,

8 2
L)-1 IC-7

SELECTE
SEP 4 1981 D

D
Rensselaer Polytechnic Institute

Troy, New York 12181

Approved for public zeleasel
istribution Unlimited

Diet 5 Soein For

UnannoJune

JU.StiOfficeoo

Contactribution/~?26

Matemaica ScenedDp/tetorECE
Deiseae Poytchicintaut

Tecoyca Ne ork 121816

A,~ ~ ? , SPAL INTOA

A Ppredpfre pubiorlcsl

U..Dficeibtofn UnIie /6(4

INTRODUCTION

This report describes a PASCAL compiler which is rather
unique in that its target language is the lambda-calculus
instead of some machine code. Although the object code that it
generates can be executed by means of a lambda-expression-
reducer [31 (resembling a pure LISP interpreter), the intended
use of the code is in proving programs correct.

The compiler is written in PASCAL itself and contains an
attributed LL(1) parser [71 of the complete standard PASCAL
language [51. Its error recovery is quite elaborate and it
provides substantially better error diagnostics than several
existing standard PASCAL compilers [9]. It produces code for a
large subset of standard PASCAL, covering most programs that are
interesting from the theoretical program-verification viewpoint.
The translated features include: multidimensional arrays,
assignment statements in their generality, I/O statements,
compound, conditional and repetitive statements, procedures,
with recursive calls and global side effects allowed.

This report is divided into two parts: The first part gives
a formal definition of the version of lambda-calculus used as
the target language, and describes the representation rules to
translate PASCAL programs into the lambda-calculus. The second
part contains a code-independent description of compilation al-
gorithms including the complete LL(l) push-down automaton. It is
assumed that the reader is familiar with the basic ideas of the
lambda-calculus [4,101 and the top-down parsing methods [7].

3

PART 1: THE TARGET LANGUAGE

1.1. Introduction

The target language of the compiler is a slightly modified
form of the lambda-calculus [4,101. The structure of the PASCAL
source program will be partially preserved by the translation
into this language. Theoretically, an object program could be
converted into a single lambda-expression. However, this is
undesirable since the resulting code will lack clarity and will
be inefficient for later automatic evaluation. Furthermore there
is a ("software") machine which will execute this language in a
slightly different syntactic setting [3]. This part introduces
the essential concepts of the calculus and its modelling
capabilities for PASCAL programs. For a detailed discussion of
the lambda-calculus model of ALGOL-like programming languages,
the reader is referred to [1,2].

1.2. The Lambda-Calculus

Adopting a commonly used terminology [1], the syntax of the
lambda-calculus is given by the following BNF-definition:

(1) <indeterminate> ::= <PASCAL-identifier including '$' in the
letter set>

(2) <lambda-expression> <indeterminate>
(3) <lambda-expression> <application>
(4) <lambda-expression> <abstraction>
(5) <application> (<lambda-expression> <lambda-expression>)
(6) <abstraction> (%<binding indeterminates>:<lambda-expres-

sion>)
(7) <binding indeterminates> ::= <indeterminate>

When using multi-character symbols, it may be necessary to
separate the lambda-expressions in production (5) by blank
spaces. Blank spaces are allowed also whenever no syntactic unit
is split apart. The lambda-expression in production (6) is the
scope of the preceding binding indeterminates. An instance of an
indeterminate within a given lambda-expression is bound if it
occurs in the scope of a same binding indeterminate. However, it
is bound by only the same innermost binding indeterminate.
Otherwise its occurence is free in this lambda-expression. If e,
fl, f2,..., fn are lambda-expressions and xl, x2,..., xn are

* Note that the percent sign is used to denote the Greek letter
lambda, because the printer on which this document is being
produced is not equipped with a Greek character font.

4

pairwise distinct indeterminates , then

sub[fl,xl; f2,x2;...; fn,xn; el

denotes the result of simultaneously substituting fi for all
free occurences of xi (lign) in e.

The lambda-calculus contains the following contraction and
expansion rules:

Alpha-conversion (renaming bound variables):
(% x: e) -(alpha)-> (% y: sub[y,x; el) provided that
y has no free occurence in e.

Beta-contraction (substitution):
((% x: e)f) -(beta)-> sub[f,x; el if no free inde-
terminates in f occur bound in e.

Eta-contraction (extensionality):
(% x:(e x)) -(eta)-> e if x does not occur free in
e.++

The converses of beta- and eta-contractions are called
beta- and eta-expansions, respectively. A (possibly empty)
sequence of contractions and alpha-conversions is called
reduction (denoted by "->"). Conversion ("<->") also includes
expansions. An irreducible lambda-expression cannot be beta- or
eta-contracted further. If a lambda-expression e can be
converted into an irreducible lambda-expression f, then f is
uniquely determined up to alpha-conversions and, futhermore, e
-> f. The leftmost (outermost) computation rule is safe in the
sense that it always leads to this irreducible lambda-expression
("normal form") provided that this expression exists. Most
results may be proved using the Church-Rosser Theorem [4]: If e
<-> g, then there is a conversion from e into g in which no
expansion preceeds any contraction.

The following lemma suggests a useful extension of the
syntax for lambda-expressions:

Lemma:
(...((%xl:(%x2:(...(%xn:e)...)))fl)...fn)- >sub[fl,xl;f2,x2;...;
fn,xn; el provided no free indeterminate in any of the fi's is

+ In the following, e, f, g,... will denote lambda-expressions
and x, y,... indeterminates. Unless stated otherwise, they are
always assumed universally quantified in definitions and
theorems of the meta-language.
** This rule will not be applicable to the lambda-expressions
generated by the compiler.

5

bound in e.

Therefore the syntax of lambda-expressions will be extended by
allowing a list of indeterminates in abstractions, viz.

(8) <binding indeterminates> ::= <binding indeterminates>,<inde-
terminate>

This notation can be viewed as a shorthand for nested abstrac-

tions:

(% xl,x2,...,xn: e) means (% xl:(% x2:(...(% xn: e)...))).

However, an automatic evaluator can use the above lemma for a
faster substitution algorithm for lambda-expressions in this
form.

1.3. Systems of Lambda-Expression Definitions

It is a convenient practice to define a certain name+ to be
a representative of a given lambda-expression. Then this name
may be used many times without rewriting its whole definition.
The following productions complete the syntax of the target
language:

(9) <list of definitions> ::= <definition>
(10) <list of definitions> :: <list of definitions><definition>
(11) <definition> ::= <name>=<lambda-expression>.
(12) <lambda-expression> ::= <name>
(13) <name> ::= <PASCAL-identifier including '$' in the letter

set>

An "object"-program is then a <list of definitions>. At
this point a single lambda-expression may not always be
recovered by merely replacing all names by their corresponding
lambda-expressions because some names could be referred
recursively using their own names on right-hand sides of their
definitions. Before this problem can be resolved, some basic
lambda-expressions shall be introduced. Since the compiler
generates source-program-dependent names, special or predefined
names will always be distinguished from these by a preceeding
'$' character. This is the reason for including a '$' sign to
the PASCAL letter set in the productions (1) and (13).

+ Names act like variables in the language. They are distinctly
different from indeterminates in that the language does not
contain any rules indicating what objects indeterminates
represent or how they may "vary" throughout a calculation. By
specifying theorems about the language, indeterminates often
attain the property of meta-variables. Therefore "name" was
chosen to avoid possible confusion.

6

$ID = (% X: X).
The identity ("do-nothing") function and empty list.

SCAT = (% X,Y: (% Z: ((X Z) Y))).
The concatenation of objects. If (% X: ((((X yl) y2)
...) yn)) represents a list of n elements SCAT will then
append an element to a list of this structure.

$OMEGA ((% X,Y: (X Y))(% X,Y: (X Y))).
The undefined value. It should be noted that ($OMEGA f)
-> $OMEGA but $OMEGA does not possess a normal form.

$Y = (% X:((% Y:(X(Y Y)))(% Y:(X(Y Y))))).
The recursion operator. Since ($Y g) <-> (g ($Y g)),
($Y g) is a solution to the recursive definition of F =
(g F), provided that g does not contain the name F.

$Y can now be employed to model general recursion. First it
is necessary to beta-expand the right-hand sides of recursive
definitions into the form

((((g <name>)<name>)...)<name>)

such that no name occurs inside the lambda-expression g and all
recursively referenced names are listed in a given order. An
explicit solution of the system of definitions

nl = ((((gl n1) n2)...) nk).
n2 = ((((g2 n1) n2)...) nk).

0.

nk = ((((gk nl) n2)...) nk).

is determined by

ni = ((((Y[i,k] gl) g2)...) gk), with

XZ-list (% Y:((... ((Y(X Z1))(X Z2)) ...)(X Zk))), and
Y[i,k] = (% Z1,...,Zk:(($Y (% X: XZ-list))(% X1,...,Xk:Xi))).

This is also the least fixed point solution under a certain
ordering [8]. However, it should be noted that an automatic
evaluator will work more efficiently by replacing names
recursively during execution time rather than introducing the $Y
operator beforehand.

1.4. Primitives in the Model

It is possible to represent natural numbers and arithmetic
operations in the lambda-calculus [4]. This representation can
be extended also to (signed) integers and much of computer

7

arithmetic [1].

But instead of defining them as lambda-expressions, we
accept a number of arithmetical and logical constants and
operators as primitives in our model. The reduction charac-
teristics of these primitives reflect the algebraic properties
of the corresponding objects (viz. the integers and the logical
values). An evaluator program can simulate these primitives with
computer-internal arithmetic operations rather than using their
lambda-calculus definitions, thus gaining a considerable gain in
speed.

The compiled program may contain the following names
associated with primitives:

0, 1, 2 The positive integers. These are the only names
syntactically different from identifiers. n,
m,... will denote lambda-expressions reducing to
the integers n, m.... or their names.

$MINUSUNARY... Integer negation.
$PLUS Integer addition.
$MINUS Integer subtraction.
$MULT Integer multiplication.
$DIV Integer division.
$TRUE Boolean value true. It is assumed that (($TRUE g)

h) -> g.
$FALSE Boolean value false. It is assumed that (($FALSE

g) h) -> h.
$NOT Boolean negation.
$AND Boolean conjunction.
$OR Boolean disjunction.
$EQ Integer comparison equal.
$NE Integer comparison not equal.
$GT Integer comparison greater.
$GE Integer comparison greater than or equal to.
$LT Integer comparison less.
$LE Integer comparison less than or equal to.

The following three primitives are used for array handling.
An n-dimensional PASCAL array is treated as a vector of n-1
dimensional arrays with 0 dimensional arrays treated as scalar
objects. Vectors will be treated as lists in the object language
(see SCAT). For the definition of these primitives in the
lambda-calculus, see (1].

STUPINIT Initialization of an array. Its reduction
property is (...(($TUPINIT n) ml)... mn) ->
"list of ml lists of m2 lists of ... mn $OMEGAs".

$RETRIEVE Indexing of vector elements. Its reduction
property is (f (($RETRIEVE i) k)) -> "i-th
element of f if f is a list of k items (lambda-
expressions)".

8

SREPLACE Assigning a vector element. Its reduction
property is (f((($REPLACE i) k) g) -> "list of
k items provided that f is a list of k elements
where all but the i-th element are copied from f
and the i-th position is g".

In the lambda-calculus, characters may be modelled by their
corresponding numerical code. In order to distinguish the codes
from numbers a primitive equivalent to the standard PASCAL
function "CHR" is introduced:

CHR Code character. In the pure lambda-calculus

CHR = $ID.

1.5. Functional Semantics of Variables and Statements

Each statement of a PASCAL program may be thought of as
operateing on two different entities: A set of variables (global
and local) addressable at tie time the statement is being
executed (its "environment"), and some sort of register
indicating which place in the program is currently executed. It
is not hard to imagine that this register may contain an
eventually recursive description of the entire portion of the
program not executed so far (the "continuation" or the "program
remainder"). With this view a statement acts more like a
functional since one of its arguments, the continuation, itself
turns out to be a function. A statement can then be translated
into an abstraction with respect to the continuation, denoted by
the indeterminate "$PHI", and the environment variables, denoted
by their PASCAL identifiers whenever possible. If imported and
local identifiers coincide, conflicts will be resolved by
appending "$" and the proper block level number to these
identifiers. If all continuations and current values of
variables are arranged in a certain list form, this abstraction
will not become too complex to construct.

In the following, a representation rule [2] of the form

ISI/(vl, v2,..., vn) = abstraction,

where S is a statement and (vl, v2,..., vn) is its environment,
will be used to describe which kind of abstractions model these
statements, and to give a more concise expression to the
underlying ideas. As the compiler defines each abstraction of
the statement i by the name "$STMi", representation rules can
also be seen as patterns for these definitions. For a discussion
of how representation rules are derived, see [2].

9

1.6. Compound Statements and Blocks

Compound statements are compositions of functions. This
suggests the following representation rule:

{begin; Sl;S2;...; Sn endl/E =(% $PHI:({SII/E (IS21/E (...([Snl/E $PHI) ...)))

It should be noted that the program remainder of each Si is the
first operand applied to the statement. Therefore -- and this is
true for all representations -- a statement representation
merely has to substitute this first operand into a place where
it will become applicable after the statement's reduction is
finished. In the following, the environments will not be
explicitly specified if they stay the same throughout a
representation rule.

Blocks introduce new (local) variables, initialize them to
an undefined value and delete them from the environment after
execution of their body. Let E be the global and F=(ul,..., um,
vl,..., vn) be the local environment (identifier conflicts
already resolved):

[var ul:<typel>;...; um:<typem>; begi SI;...; Sk endj/E
(% $PHI:(... ((({Sl}/F ({S2}/F (... ({Sk}/F (% ul um:$PHI))
...)))Iinit ul}) init u2). .. {iLit umj));

where {init ul is $OMEGA if u is a scalar variable,
is (($TUPINIT 1) 2) if u is a vector of p items,
is ((($TUPINIT 2) p) p2) if u is a pl*p2 matrix,

As a statement is translated into an abstraction of $PHI and the
environment variables, all current values of these variables
must follow the continuation before and also after the
abstraction was reduced. It should be noted that an attempt to
reference an undefined value will result in an infinite
reduction sequence due to a property of $OMEGA.

1.7. Expressions and Assignments

So far the compilation of only integers and Boolean
constants has been specified. But since scalar identifiers and
characters can be identified with the ordinal numbers encoding
them, all scalar constants suitable for lambda-calculus
representation can be compiled. Entire variables are indetermi-
nates of their own identifiers with ambiguities removed. As a
slight restriction only unary and binary operators on scalar
operands are accepted. Due to the list-like translation of
arrays, records can be viewed as a special form of arrays and
their field identifiers as indices.

. I.. . IlllI Il Il ll l.. . .

10

Rational and real numbers are not treated here (see [11]).
Literals and sets are part of PASCAL because they allow a very
efficient implementation on a binary computer, but could be
simulated in the lambda-calculus only by a rather clumsy
representation. Also, pointer variables have been omitted since
their representation will be quite complex. Files will be
treated in section 1.8.

The representation rules for expressions (without function
calls) heavily involve recursion. The most significant are
sketched below. In some instances a nesting level number is used
as a superscript on matching pairs of parentheses to make the
rules more readable:

Since our model requires prefix operators, the following repre-
sentation rules are essentially infix to prefix translations:

I<expr.l> <binary operator> <expr.2>1 =
(("primitive of binary oper." t<epr:1>}) {<expr.21).

[<unary operator> <expression>] =
("primitive of unary oper." [<expression>]).

For arrays in list form, it is assumed that the index origin is
at 1. Therefore the compiler has to translate all index
references explicitly to this origin. Let v be an array
[lb..hb], b an array [BOOLEAN] and d be an array [lbl..hbl,
ib2..hb2l:

1v [<expression>] I =
(v ('(2$RETRIEVE (3 ($MINUSf<expression>) lb-1 3)2)hb-lb+11)).

lb [<expression>] j =
(b (1 (2$RETRIEVE (3(<expression>i 1) 23)2) 21)).

Id [<expr.l>, <expr.2>1 I =
((Id (2(3$RETRIEVE (4($MINUS {<expr.l>1) lbl-1 4)3)
hbI-lbI+I2)1)(s(6$RETRIEVE (7($MINUS I<expr.2>}) ib2-17)6)

hb2-1b2+15)).

In the following, CHR and ORD are the standard PASCAL functions
on scalars:

1'<character>'} = (CHR "order of this character").
ICHR(<expression>)= (CHR l<expression>}).
ORD(<expression>)) [<expression>).

1-n) = ($MINUSUNARY n).

An assignment statement will be translated into a

IiI

substitution of the right-hand expression for the left-hand
variable position in the list of corresponding indeterminates.
Assignments to elements of an array complicate this process
somewhat:

lvi:=<expression> /E
(% $PHI, vl,..., vn: (...(((... (($PHI vl) v2) ... vi-l)
{<expression>}/E) vi+l)... vn).

Iv [<expr.l>] := <expr.2>1/E =
(% $PHI, vl,..., vn: (...(T(...(($PHI vi) v2)... vj-l)
(IV (2 (3 (4$REPLACE (5 ($MINUSf<expr.I>J/E)) lb-1 5)4)hb-lb+13){<expr.2>}/EJ2)1)) vj+l) ... vn).

[d [<expr.l>, <expr.2> := <expr.3>]/E =
(% $PHI, vl,..., vn: (...(((...(($PHI vl) v2)... vk-i)
assign) vk+l)... vn);

where assin is the lambda-expression:
(d(0(I(-$REPLACE (3 ($MINUS {<expr.l>}/E) ibl- 3)2?) hbl-lb+l*)
(4 ($d (6 (7$RETRIEVE (8($MINUS {<expr.l>I/E) ibl-)')
hbl-lbl+i6)5) (9(10(* 1$REPLACE (12 ($MINUS t<expr.2>J/E)
lb2-11z) * *) hb2-1b2+l10) {<expr.3>}/E9) 4)0)).

1.8. Files and Input-Output

As the I/O facilities in the lambda-calculus model are
rather simple, only the two standard files INPUT and OUTPUT are
supported during compilation. These files are unlike standard
PASCAL files of INTEGER. Their representations in lambda-cal-
culus are naturally lists denoted by the indeterminate $SCARDS
for INPUT and $SPRINT for OUTPUT. Their initial values are all
input items coded as lambda-expressions for $SCARDS and $ID (the
empty list) for $SPRINT. The current file pointers INPUT@ and
OUTPUT@ will be treated as integer indeterminates of the same
name ("@" omitted). Furthermore, only the two predefined I/O
routines GET and PUT are accepted by the code generation
routines of the compiler. Upon call, data is transferred between
the files and their associated file pointers. Contrary to
standard PASCAL the input file is not automatically reset which
means that INPUT@ contains $OMEGA at the beginning of a program
and not the first data integer of $SCARDS.

In the following representation rules, one should notice
that INPUT and OUTPUT are automatically adjoined to the environ-
ment G=(vl,..., vn, INPUT, OUTPUT) of a statement if their
corresponding files appear in the program head:

12

GET }/G
(% $PHI, vl,..., vn, OUTPUT, INPUT:(% $SCARDS, $SPRINT:
((((...(($PHI v1) v2)... vn) OUTPUT) $SCARDS) $SPRINT))).

PUT }/G =

(% $PHI, vl,..., vn, OUTPUT, INPUT:(% $SPRINT:((((...(($PHI
vl) v2)... vn) OUTPUT) INPUT) (($CAT $SPRINT) OUTPUT)))).

These representations only require $SPRINT to be arranged in
list format (see definition of SCAT) whereas the input elements
merely have to follow this output list. The representation of a
complete program which the compiler names $PROGRAM follows:

[program...; Si.)/() = (({Si}/() $ID)$ID);

where Si is the outermost begin-end pair and () the empty list.

The first SID is the final program remainder and the second the

empty $SPRINT. SPROGRAM has the property that

(($PROGRAM il)... ip) -> (% X:((X oi)... 2q))

where ol,..., oq are the output numbers which would be obtained
by executing the program on the input numbers ii.... ip.

1.9. Example#l

The following sample program illustrates all the concepts
described so far. The statement numbers listed will be referred
within the generated code later on:

Stmnr Source code:

(*$U+,X- superscripts, no cross reference *)
PROGRAM EXAMPLE1(INPUT, OUTPUT);
CONST

LB=2; HB=S; (* bounds for V *)
LBI=-3; HBI=O;
LB2=0; HB2=5; (* bounds for D *)

TYPE
SC=(ONE,TWO, THREE);
LET='A'..'Z';

VAR
I: INTEGER; C: LET; S: SC;
V: ARRAY[LB..HB] OF INTEGER;
B: ARRAY[BOOLEAN] OF TWO..THREE;
D: ARRAY[LBi..HBI, LB2..HB2] OF CHAR;
(* 3 dimensions! *)
P: ARRAY[LET, SC] OF ARRAY[2..71 OF TRUE..FALSE;

BEGIN
(* The following statements make no sense *)
(* but illustrate the compilation

3 GET; I:=INPUT@;

13

4 V1+1=(+)
5 I:=I+V((LB+HB) DIV 2 1I;
7 OUTPUT@:=V[41; PUT;
8 B[FALSEI:=THREE;
9 S:=B[NOT(I<>0) AND (V[I]II) I

10 BEGIN
11 D[-2, I*2]:=''
12 C:=D[EB1-2] fy[1]
12 END;
12 (* some difficult assignments *
13 P[C,S,I]:=(I<=2) OR (C='B');
14 B[P[C,S,I]]:=TWO
14 END.

The compiler generated the following code. Optionally, matching
parentheses are identified by superscripts. An asteriks in
column one signals a comment line and this line should be
ignored by automatic evaluators.

* LAMBDA CODE FOR EXAMPLE1

SSTM2=('1 % $PHI,P,D,B,V,S,C,I,OUTPUT,INPUT:('% $SPRINT,$SCARDS:
(9('(7 (6(5 (4 (3 (2 (1 (1$pHI P')D')B2)V3)S4)CS)I1)OUTpUT7)$SCARDSI)$
SPRINT') 1) 1 1)

$STM3=(9% $PHI,P,D..B,V,S,C,I,OUTPUT, INPUT: (8((6 ('(4 (3 (2 (1(0$pHI
PO)D')B2)V3)S4)C) INPUT')OUTpUT7) INPUT')').

$STM4=(14% $PHI,P,DB,V,S,C,I,OUTPUT, INPUT:(3((1(1(((((
$PHI PI)DI)Bz)('V(6(5('$REPLACE (3 (2SMINUS ('(S$pLUS 11)11)2)13
)4)45)(2$MINUSUNARY ('(O$PLUS 10)11)2)6) 7)9)S')C1 1)11)OUTPUT12)
INPUT1 3)1 4)

$STMS(I% $PHI,P,D,B,V,S,C,I,OUTPUT,INPUT: (14(13(12(5(4 (3(2(1(0
$PHI P')D')B2)V3)S4)C') (11($PLUS 10) (10 ('sMULT (OV(7'(6$RETRIEVE

(S(4 $MINTJS (3(2$DIV (1'(*$PLUS 21)51)2)23)4)15)6)47)8)9)110)11)1
2)OUTPUT 3) INPUT'4) 15).

$STM6=(9% $PHI,P,D,B,V,S,C,I,OUTPJT, INPUT: (9(1(6(5(4 (3 (2 (1(0 $PH:I
pO)D 1)BZ)V 3)S4)C')I')(4V(3 (2$RETRIEVE (4-(0$MINUS 41)1)2)43)4)7

)INPUT')9).

$STM7=('% $PHI,P,D,B,V,S,C,I,OJTPUT,INPUT: (10% $SPRINT:('(9(7(6
(5(4 (3 (2 (1 (0$PHI P0)D')B2)V3)S4)C')I')OUTPUT'I)INPUT')(($CAT $SPR
INT)OUTPUT)) 10)1).

$STM8(1% $PHI,P,D,B,V,S,C, I,OUTPUT, INPUT: (12(11(10(S(0(7(6(1(0
$PHI PO)D)(sB (4(3(2$REpLACE ('(0$FALSE 11)21) 2)23)24)1))V')Se)
Cs)I'0)OUTPUT1 1)INPUTl2)'3).

14

$STM9("9% $PHI,P,D,B,V,S,C, I,OUTPUT, INPtT:(1 7 (1 (1 4(I(1 3 (3 (2 (1

(G$PHI P')D1)B2)V3) (12-B(11QO$RETRIEVE ('(0(7 (3$AND (2$NOT (1(0$
NE IO)01)2)3)(G(5SLT (4V(3(2$RETRIEVE ('(*$MINUS 1')11)2)43)4)5)
('(O$PLUS 14)11)6)7) 18)29)10)211)'2)13)C1 4)115)OUTpUT 6)NptJT 1

)10).

$STM11(16% $PHI,P..DB,V,S,C,I,OUTPUT, INPUT: (17(16(1S(14(13(12QI
1(10(0$pHI pQ)(9D(8(4 (3$REPLACE (2 (1$MINUS (O$MINTSUNARY 2*)')(0
$MINUSUNARY 40) 2)3)44)(7(5 D(4 (3$RETRIEVE (2('$MINUS (*$MINUSUNAR
Y 20)1)(SMINUSUNARY 4')2)3)44)5)(6 (5 (4$REPLACE (3(Z$MINJs (1(1$
MULT 10)21)Z)('$MINUSUNARY 1')3)4)65)(ICHR 216')6)7)8)9)10)B1')V
12)S1 3)C1 4)115)OUTPUT1) INPUT1 7) S).

$STM12=('4% $PHI,P,D,B..V,S,C,I,OUTPUT,INPUT: (13(12(11(10(4(3(2(1
(*$PHI P*)D1)B2)V3)S4)(9(8 D(5(4 $RETRIEVE (3 (2$MINUS (1 (D$MINUS 0
)21)2)('$MINIJSUNARY 4*)3)4)4s)s)(8(7$RETRIEVE (6(5$MINUS (4V(3 (

2$RETRIEVE (1 (0$MINUS 30)11)2)43)4)5)(C$MINJSTNARy 10)6)1)60)9)1
O)111)OUTpUT12)INPUT1 3)14).

$STM1O=(2% $PHI:(1$STMl1(0$STM12 SPHIO')?).

SSTM13=(Zo% $PHI,P,D,BV..S,C,I,OUTPUT, INPUT: (19(10(17(16(15(14(1
3(12(11$pHI (1Op(9(3(2SREPLACE (' ('$MINUS C0)1921)2)413)(I (4p(3 (2$RETRIEVE (1(O$MINUS C0)1921)z)413)4)(7(1 ($REPLACE So)21)(6(S(
4p(3(2$RETRIEVE (*($MINUS CO)1921)2)413)4)(1 (G$RETRIEVE S')2 1)s
)(4 (-3(2$REPLACE ('(#$MINUS I').11)2)63)(3 (2 $OR ('('$LE 10)21)2)(2

OUTPUT1 0)INPUT"9)20).

SSTM14=(2 0% $PHI,P,DB..V,S,C,I,OUTPUT, INPUT: ('9(10(1 7(16(1S(14(1
3(1(0SPHI PQ)D 1)(12B(11 (1 0 (9REPLACE (9('1(6 (5 (4p(3 (2$RETRIEVE (
(#$MINUS CO)1921)2)413)4)(1 (O$RETRIEVE SO)21)5)(3 (2 $RETRIEVE(1
Q$MINUS I*)1')2)63)6) 17)20)9)215)111)1 2)1 3)V1 4)SIS)C 1 6)11 7)OUTp
T'l)INPUT1 9)29).

$STM1=(2 2% $PHI: ((((((((((11 SSTM2('$STM3(9$STM4('$STMS(7 $STM6(6
$STM7(5$STM8(4$STM9(3$STM1O(2 $sTM13(1 $STM14('% P,D,B,V,S,C, I,OUT
PUT,INPUT:$PHIO)1)2)3)4)5)6)7)8)9)10)1)(3 (2 (1 (0 $TUPINIT 30)411)
2Z)6 3))(?(($TUPINIT 20)4 1)62))(1 ('$TUPINIT 10)21))(1(,$TUPINIT
l)4))$OMEGA)$OMEGA)$OMEGA)$OMEGA)$OMEGA)12).

$PROGRAM=(($STMI $ID)$ID).

1.10. Conditional Statements

The reduction properties of $TRUE and $FALSE mentioned
earlier, together with the definition SIF=SID, imply a straight-
forward representation of if-statements:

15

[if <expression> then Si else S2}/E =(% $PHI, vl, vn: (... ((((($IF { <expression>}/E) [SI}/E)

{S21/E) $PHI) vl)... vn).

{if <expression> then Slj/E =
(% $PHI, vl,..., vn: (... (((($IF {<expression>}/E) {SIJ/E)
$ID) $PHI) vl)... vn).

Case-statements could be represented as a sequence of if-
statements.

1.11. Repetitive Statements

Any PASCAL loop can be transformed into a while loop. For
instance repeat S until <expression> is equivalent to begin S;
while <expression> do S end. While-statements themselves lead to
recursive definitions. Let i be the statement number of the loop
being represented:

[while <expression> do SI/E =
$STMi=(% $PHI, vi,..., vn:(...((1 (2 (3$IF {<expression>)/E 3)
(4{JS}/E (5$STMi SPHIS)4)2) $PHI') vl) ... vn).

The small but essential difference between this if-construction
and the one in the previous section 1.10 should be observed: The
alternate clause has to be $PHI instead of $ID.

1.12. Example#2

The following program illustrates compilation of while
loops and if statements:

Stmnr Source code:

(*$U+,X- superscripts, no cross reference *)
PROGRAM SORT(INPUT, OUTPUT);
CONST LB=4; HB=9;
VAR A: ARRAY[LB..HBI OF INTEGER;

I, J, TEMP: INTEGER;
NC: BOOLEAN;

BEGIN
2 I:=LB;
3 WHILE (I<=HB) DO
3 BEGIN
5 GET;
6 A[I]:=INPUT@
6 END;
7 J:=HB;
8 NC:=FALSE;
9 WHILE (J>LB) AND NOT NC DO
9 BEGIN

11 I:L3;

| i

16

12 NC: =TRUE;
13 WHILE (I<J) DO
14 BEGIN
15 IF A[I]>A[I+lJ
15 THEN BEGIN
17 TEMP=A [II;
18 A[I] :A[I1];
19 A[I+11 :TEMP;
20 NC:=FALSE
20 END;
21 I:1I+1
21 END;
22 J:=J-1
22 END;
23 I:=LB;
24 WHILE (I<=HB) DO
24 BEGIN
26 OUTPUT@:=A[I);
26 PUT
27 END
27 END.

*LAMBDA CODE FOR SORT

$STM2=(% $PHI ,NC, TEMP, J, I,A,OUTPUT, INPUT: (5(32((6$PHI NCO
)TEMP')J2)43)A4)OUTpUT) INPUT6S)').

$STM5=(9% $PHI,NC,TEMP,J,I,A,OUTPUT, INPUT: (8% $SPRINT,$SCARDS: (7
(S(S(4 (3(2 (1 (S$PHI NC')TEMP1)j2)13)A4)OUTPUT5)$SCARDS6,)$SPRINT')
9) 9).

$STM6=(9% $PHINC,TEMP,J, I,A,OUTPUTI INPUT: (8(7(6(3(2(1 ('$PHI NCO
)TEMPl)J 2)I3)(SA(4 (3 (z$REPLACE ('(0 $MINUS IG)31)2)63)INplUT 4)5)6)
OUTPUT) INPUT')9).

$STM4=(z% $PHI: ('$STMS(I$STM6 $PHI')1)2).

$STM3=(la% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT: (11(10 (9(s(7(6(S(4(3(
2$IF('(*$LE 15)91)2)U'$STM4('$STM3 $PHI')1)a)PHI4)NCS)TEMPG)J')
1')A')OUTPUTIO) INPUT1 1) 12).

$STM7=(7% SPHI,NC,TEMP,J,I,A,OUTPUT,INPUT:(6 (5 (4 (3 (2 (('$PHI NC'
)TEMP1)92)I3)A4)OUTPUTS)INPUTSi').

$STM8=(7% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT:(6(5(4(3(2(1('$PHI $FA
LSE')TEMP1)J2)I3)A4)OUTpUT')INpUTI)7).

$STM11=(7% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT: (6(5(4(3(2(1(0$PHI NC
')TEMP1)J2)43)A4)OUTPUT) INPUT6)').

17

SSTM12= (7% SPHI,NC,TEMP,J,I,A,OUTPUT,INPUT: ('(5 (4 (3 (2 (1 (0SpHI $T
RUEO)TEMPI)j 2)1 3)A 4)OUTpUTS)INpUT6)7).

$STM17=(11 % $PHI,NC,TEMP..J,I,A,OUTPUT, INPUT: (''(9('(7 (G('('SPHI
NC')(4 A(3 (2$RETRIEVE (l(l$MINUS 11)31)2)6 3)4)5)j6)11)A@)OUTPUT9)
INPUT1 S) 1 1).

SSTM18=(12% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT: (1 (''(9(3 (2 ('('$PHI
NCI)TEIp1)J2)13)(*A ((3 (2 $REPLACE (1 (DSMINUS 10)31)2)63)(GA(S(4

SRETRIEVE (3 (2$MINUS (1'('$PLUS 1I)1 1)2)33)4)6s)6))')9)OUTPUT1 ')
INPUT") 12).

$STM19=('1 % $PHI,NC,TEMP,J,I,A,OUTPUT, INPUT: (1 0(9('(3 (2 (1 (0$pHI
NC'l)TEMPl)j2)13)(7A(6 (s(4S$REPLACE (3 (2SMINUS (1 ('SPLUS 11)11)2)3
3)4)65)TEMP) ')')OUTPUT) INPUT1') 11).

SSTM2O=(7% $PHiI,NC,TEMP,J,I,A,OUTPUT, INPUT: (6 (5(4 (3(2 (1 ('SpHI SF

ALSE')TEMP1)j2)13)A4)OUTpUT')INpUT6)'I).

$STM16=(4% SpHI:(3SSTM17(2$STM18(1 SSTM19(S$STM2O SpHI')1)2)3)4).

SSTM15=Q'9% $PHI,NC,TEMP,J,I,A,OUTPUT, INPUT: (19(17(15(1S(14(13(1
2(1 1(1 0 (9(9$IF(7 (S$GT (4 A(3 (2SRETRIEVE (1'(*$MINUS 11)31)2)63)4)5
)(6A(5 (4$RETRIEVE (3 (2 $MINUS ('(O$PLUS 10)11)2)33)4)65)6)7)')$ST
M169)$IDII)$PHI1 1)NC12)TEMP13)j14)I'5)A 16)OUTPUT17)INpUT1)''9).

SSTM21=('% SPHI,NC,TEMP,J, I,A,OTJTPUT, INPUT: (6(1(4 (3(2(1 ('SPHI NC
')TE?4P1)J2) (1 ('PLUS 10)11)3)A 4)OUTpUT) INPUT6) 7).

$STM14=(2% SPHI: (I$STM15('$STM21 $PHI)I)Z).

$STM13=(12% $PHINC,TEMP,J,I,A,OUTPUT, INPUT: (11(1§(9(0(7(6(S(4(3
(251F(1 ('$LT II)J')?)('SSTM14(S$STM13 SpHI'l)') 3)SpHI4)NCS)TEMP6)
J')I1')A')OUTPUT1 ') INPUT1 1)12).

$STM22=(7% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT: ((5 (4 (3 (2 (1(0 $pHI NC
')TEMP1)('('$MINUS JI)1 1)2)13)A4)OUTpUTS)INpJTS)7).

$STMIO=(4% $pHI: (3$STM11(2$STM12(1 $STM13(0$STM22 SPHI')')2)3)4).

$STM9=(14 % $PHI,NC..TEMP,J,I,A,OUTPUT, INPUT: (13(12(11(10(9(e(7(6(

(4 $1F(3(2SAND (1('$GT J')4) 2)('SNOT NC) 3)4)(SSTMLO('$STM9 $p

$STM23=(7% $PHI,NC,TEMP,J,I,A,OUTPUT, INPUT: (6((4 (3 (2 (I ('$PHI NC

')TEMI1)J2)4 3)A 4)OUTpUT)INpUT)').

18

$STM26=(7% $PHI,NC,TEMP,J,I,A,OUTPUT, INPUT: (6 (5(4 (3 (2 ('(0 $PHI NC
')TEMP)J 2)13)A4)(4A(3 (2 $RETRIEVE (I(0 $MINUS I0)31) 2)63)4)S)INPU

$STM27=(% $PHI,NC,TEMP,J,I,A,OUTPUT,INPUT:('% $SPRINT:(7(6(5 (4(3 (2 (1 (0$PHI NCG)TEMP)J 2)I3)A4)OUTPUTS)INPUT6)(($CAT $SPRINT)OUT
PUT) 7)8)').

$STM25=(2% $PHI:(1$STM26(O$STM27 $PHI') 1)2).

$STM24=(1 2 % SPHI,NC,TEMP,J,I,A,OUTPUT,INPUT:(11(1o(9(8(7(6(5(4(3
(2$IF('(0 $LE I)9 1)2)('$STM25(0$STM24 $PHII))3)$PHI4)NCS)TEMPS)
J7)1)A9)OUTPUT1)INPUT1 1)12).

$STM1=(9% $PHI:((((((((7$STM2(6 $STM3(5$STM7(4 $STM8(3 $STM9(2 $STM2
3(1$STM24(0% NC,TEMP,J,I,A,OUTPUT,INPUT:$PHIO)1)2)3)4)5)6)7)$OME
GA)$OMEGA)$OMEGA)$OMEGA)(('$TUPINIT 1)6 1))$OMEGA)$OMEGA)1).

$PROGRAM=(($STM1 $ID)$ID).

1.13. Procedures

The full modelling of procedures containing different kinds
of parameter references (call by name, value, reference), global
side effects and possible recursive invocations constitutes a
major challenge to functional semantics (1,21. Indeed, the
actual implementations are fairly involved. At this state of
development, only procedures with parameters passed by value are
accepted by the code generation part of the compiler, but side-
effects and recursive calls are permitted. This type of
procedure will henceforth be referred to as a "V-procedure".

V-procedure definitions will be represented by names for
blocks, and their parameters will be initialized dynamically
with the argument values passed:

{V-procedure p(al:<typel>;...; ak:<typek>); <block>}/E
p = (% VALal,..., VALak: f<block>J/E).

Inside the block representation (see section 1.6) a new initial
value is chosen for all formal parameters ai:

linit ail is SVAL$ai for all value parameters ai.

In the case that the environments of the calling statement
and the V-procedure definition are the same, the representation
of the call is simple:

19

p (<expr.l>,..., <expr.k>) I/E
(% SPHI, vl,..., vn:(...(((...(p I<expr.l>1/E)...
I<expr.k>'/E) $PHI) vl)... vn)).

Should the environments differ (e.g. if the V-procedure is
called recursively), all additional variables of the calling
environment have to be disposed of during the V-procedure
execution and recovered upon return. This is done by including
them into the continuation of the calling statement and re-
establishing them when this continuation is accessed by the
reduction process. Let G=(ul,..., um, vl,..., vn) be the calling
and E=(vl,..., vn) the procedure environments.

p (<expr.l>,..., <expr.k>))/G =
(% $PHI, ul,..., um, vl,..., vn:(...(((...(p f<expr.l>j/E)...
I<expr.k>}/E)(... (($PHI ul) u2)... um)) vl)... vn)).

This representation solves the so-called environment conflict
problem (2].

1.14. Example#3

The following example shows how procedures and their calls
will be translated:

Stmnr Source code:

(*$U+,X- superscripts, no cross reference *)
PROGRAM EXAMPLE3(OUTPUT);

VAR I, J: INTEGER;
PROCEDURE PI(K, L: INTEGER);

VAR M: INTEGER;
BEGIN

2 IF O<>L
2 THEN BEGIN
6 M:=K; K:=L; L:=M MOD L;
7 Pl(K, L)
7 END
8 ELSE OUTPUT@:=K
8 END; (* P1 *)
8 PROCEDURE GCD(I, J: INTEGER);

11 BEGIN P1(I, J); END; (* GCD *)
11 BEGIN
14 I:=28; J:=7;
15 GCD(I, J+14);
15 PUT
16 END.

I ll 1 ri - i ~ , ._ I li . . . / . - ". .. . I ni ~m i " I ,
'

..-

20

*LAMBDA CODE FOR EXAMPLE3

P1=(% VALL, SVAL$K: $STM10).

$STM4=(G% $PHI,M,K,L,J,I,OUTPJT: (5(4(3(2(1 (SPHI K')K1)La)j 3)1 4)
OUTPUT5)6).

$STMS(% $PHIMK,L,JI I,OUTPUT: (5(4 (3(2(1 (0$pHI M')L1)L 2)j 3)14)
OUTPUT6)6).

$STM6=(G% $PHI,M,K,L,J..I.OUTPUT: (5(4 (3(2(1 (0$PHI Mo)K 1l)(1 ('$MOD
M')L1)2)J3)14)OUTPUT5)D).

$STM7=(7% $PHI,M,K,L,J,I,OUTPUT: ($((4 (3(1 (Dp1 K')L1)(2(1(0$pHI
M9)K 1)LZ) 3)j4)I')OUTpUTG)7)

$STM3=(4% SPHI:(3$STM4(2$STMS(1 $STM6(0$STM7 $pHIO) 1)2)3)4).

$STM8=(6% $PHI,M,K..L,J,I,OUTPUT: (S(4 (3 (2 (1 ('$PHI M')K 1)L2)j3)14)

$STM2=(1 2% $PHI,M,K,L,J,I,OUTPUT: (11 (1 0(9('Q(7(5 (4 (3 (2 $IF (1(1$
NE OD)L 1) 2)$STM3 3)$STM 4)$PHI)M)K)L)J9)11 0)OUTPUT 1 1)2 2).

$STM1=(2% $PHI:((((1 $STM2(0% M,K,L:$PI')')$OMEGA)$VAL$K)$VALSL)

GCD=('% VALJ$2,$VALI2:$STM90).

$STM1O=(6% PHI,I2,J$2,J$1,I$1,OUTPUT: (S(4 (3 (2 (1('pl1I$20)J$21)
(1 ('$PHI I$21)JS2 1)2)J$1 3)I$1 4)OUTpUTS)6 5).

$STM11=$ ID.

$STM9=(3% $PHIt(((2$STM1O(l$STM11(l% I$2,J$2:$PHIO)2)2)VALI$2)
VALJ$2)3).

$STM13=(3% $PHI,J, I, OUTPUT: (Z(1 ('PHIl JI)281)OUTpUTZ)3).

$STM14=(3% $PHI,JD I,OUTPUT: (Z(1 ('PHIl 70)11)OUTPUT2)3).

SSTM1=('% $PHI,J,I,OUTPUT:(6 (5(4 (3 (2 (GGCD Il)(1 (ISPLUS JO)14 1)2
)$PHI 3)j 4)IS)OUTPUT)7).

$STM16=(S% $PHI,j,I,OUTPUT: (4% $SPRINT: (3 (2 Q1(0$pHI J')I')OUTPUT
2)(($CAT $SPRINT)OUTPUT)3)4)S).

$STM12=($% $pHI:((((4 $STM13 (3 $STM14(2 $STM15(1$STM16(1% J,I,OUTPU

T:$PHII)1) 2)3)4)$OMEGA)$OMEGA)$OMEGA)5).

$PROGRAM=(($STM12 $ID)$ID).

21

1.15. Remarks on Further Language Constructs

Until now all representations described have been actually
implemented in the compiler. Some remarks are in order regarding
how some PASCAL features for which no lambda code is currently
generated by the compiler could be translated.

Labels can be viewed as names for continuations. A goto
statement then merely substitutes the representation of the
referenced label for the current program remainder. However, it
seems a very tedious task to determine the continuation at a
given point of a program at compilation time.

Function calls are similar to procedure calls. If no side
effects occur their represention is actually very simple [2].
Otherwise many intermediate results have to be introduced
because function calls can be made repeatedly within a single
expression. Their representation is not theoretically difficult
but it is rather hard to actually implement their translation.

The modelling of procedure and function parameters as well
as pointer variables seems too complicated at this stage.

1.16. Example#4

Part 1 is concluded with a "real" PASCAL program example to
multiply matrices:

Stmnr Source code:

(*$U+,X- superscripts, no cross reference *)
PROGRAM MATRIXMULT(INPUT, OUTPUT);

CONST LB=5; HB=10;
TYPE RANGE=LB..HB;

MATRIX=ARRAY[RANGE, RANGE) OF INTEGER;
VAR A, B, C: MATRIX;

I, J, K: INTEGER;

PROCEDURE READWRITE(SWITCH: BOOLEAN; C: MATRIX);
(* Reads in A and B (global) or prints C *)
(* according to the logical SWITCH

VAR I, J: INTEGER;
BEGIN

2 I:=LB;
3 WHILE I<=HB DO
3 BEGIN
5 J:=LB;
6 WHILE J<=HB DO
6 BEGIN
8 IF SWITCH

22

8 THEN BEGIN
11 GET; A[l, JI:=INPUT@;
13 GET; BII, J]:=INPUT@
13 END
13 ELSE BEGIN
is OUTPUT@:=C[I~IJ]; PUT
16 END;
17 J.=~
17 END;
18 I:1I+1
18 END
18 END; (*READWRITE*)
18
18 BEGIN (* of main program *
20 READWRITE(TRUE, C); (* C is just dummy *
21 I:=LB;
22 WHILE (I<=HB) DO
22 BEGIN
24 J:=LB;
25 WHILE (J<HB) DO
25 BEGIN
27 CIII, J];=O;
28 K:=LB;
29 WHILE (K<=HB) DO
29 BEGIN
31 CIII,J]:=CII,JI+A[I,K]*B[K,J];
32 K:=K+1
32 END;
33 J:=J+1
33 END;
34 I:14-1
34 END;
3S READWRITE(FALSE, C)
35 END.

*LAMBDA CODE FOR MATRIXMULT

REAflWRITE(% VALSWITCH,VALC2:$STM').

$STM2(12% PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INPU
T: (1 1 (10(9(} 7 (6(5 (4 (3 (2 (1 (0$pHI J$20)51)C$22)SWITCH3)K 4)jS1 5)I$
16)C$17)Bl)A')OUTPUT1 *) INPUT1 1) 12).

$STMS-(1 2 %~ PHI,J2,1$2,C$2,SWITCH,K,J$1,I$,C1,B,A,OUTPUT,INPU
T: (11 (10(9((7(6(5(4(3(2(l (0$PHI 50)I$21)C$22)SWITCH3)K4)j$15)I$
16)C$1)B)A)OUTPUT 1)INPUT1 1)12).

23

$STT41O=(14 % PHI,J2,1S2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT:(1 3% $SPRINT,$SCARflS: (1 2 (11 (10(9('(7((5(4 (3 (2 (1 (0 $PHI J$20)I
$21)CS22)SWITCH3)K4)J$15)I$16)C$17)B)Ag)OUTPUT1)$SCARDS1')SSPR
INT12)1 3)14).

SSTM11=(22% PHI,J2,IS2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT: (1 1 (1 0 ('(8(7(6(5 (4 (3 (2 (1('$PHI J$2)I$2')C$22)SWITCH 3)K4)J$15
)I$1 6)C$17)BO)(7 A(6(3 (2$REPLACE ('('$MINUS I$21)41)2)63)(5(4A (3 (
2 $RETRIEVE (1(O$MINUS 1$20)41)2)63)4)(4 (3 (2$REPLACE (1(0$MINUS J
$20)4 1)2)63)INpUT4)5)6)1)9)OUTPUTTI)INPUT1 1)12).

$STM12=(1 4% PHI,J2,IS2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT: (1 3% $SPRINT, SSCARDS: (12(11(10 (9(9(7(6 (5(4(3(2(1(0 $PHI J$20) I
$21)C$22)SWITCH3)K4)J$15)I$16)C$11)B8)A')OUTPUT1 0)$SCARlS')$SPR
INTIZ)1 3)14 .

$STM13=(12 % PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT:(1 1 (1 0 (9(0(7 ('(5 (4 (3 (2 (1(0$pHI J$20)I$2')C$22)SWITCH3)K 4)J$15
)I$16)C$1 7)(7B(6 (3 (2$REPLACE (' (Q$MINUS I$20)41)2)63)(S(4B(3(2$R
ETRIEVE ('('$MINUS 1$20)41) 2)63)4)(4 (3 (2-$REPLACE ('(O$MINUS J$20
)41)2)63)INpUT4)S) 6)7)8)AS)OUTPUT'0)INPUT'') 12).

$STM9=(4% $PHI:(3$STM1O(2 $STM11('$STM12(0 $STM13 $PHII)1)2)3)4)_

$STM15=('2% PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT: (''(''(9(8(7(6(S(4 (3 (2 ('(0$pHI J$20)I$2')C$22)SWITCH3)K 4)j$15
)I$3 6)C$17)BI)AS)(S(4C$2(3(Z$RETRIEVE (-(S$MINUS 1$22)41)2)63)4)
(3 (2SRETRIEVE (1(O$MINUS J$20)4')2)63)5)10)INPUT'')1 2).

$STM16=(14% PHI,J2,IS2,CS2,SWITCH,K,JS1,IS1,C$1,B,A,OUTPUT,INP
UT: (13% $SPRINT: ('2 (11(1 0 (9(9(7 (6 (5 (4 (3 (2 (1 (0$pHI J$20)I$21)C$22
)SWITCH3)K4)J$15)I$16)CS17)B')A')OUTPUT'0)INPUTll)(($CAT $SPRINT
)OUTpUT)12)13)'4).

$STM14=(2% $PEI:(1 $STM15(0 $STM16 $PHIO)')2).

$STMS=(1'% PHI,J2,IS2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INPU
T: (1S(14(13(12(11(11(9(a(7(6(5(4(3(2(I (0 $IF SWITCH')$STM91)$STM1
42)$pHI')J$2 4) I$2')C$2')SWITCH7)K)J$19i' IlI 0)C$11 1)B 2)A'3~)OUTP
UT1 4)INPUT1 S)216).

$STM17=(14% PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUTr,INP

4)SWITCH)KO)j$1') Isi)C$1')B1 S)A' 1)OUTPUT'2 2)INPUT'3) 14)

24

$STM7=(2% $PHI: (1$STM8(0$STM17 $PHID)1)2).

$STM6=(''% PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,c$1,B,A,OUTPUT,INPU
T: (1 6 (1 5 (1 4 (1 3 (1 2 (11(10(9 (8(7 (6 (5(4 (3 (2$IF ('(D$LE J$20)1O')Z)(1
$STM7(*$STM6 $PHI')')3)$PHI4)J$2s)I$26)C$27)SWITCHO)K')J$110)I$I
11)C$11 2)B'3) 14)OUTPUT1 S)INPUT1 6) 1).

$STM18=(13% PHI,J2,I$2,C$2,SWITCH,K,J$1,I$1,C$1,B,A,OUTPUT,INP
UT:(1 2 (11(1'(9(8(7 (6(5 (4 (3 (2 -(0 $pHI J$2*)(1 ('$PLUS I$20)1')2)C$2 3

)SWITCH4)Ks)j$1) I$i')C$18)B')A' 0)OUTPUT') INPUT1 2)13).

$STM4=(3% $PHI:(2$STM5(1 SSTM6(0$STM18 $pHI0)1)2)3).

$STM3=(17% $PHI.J2,I$2,CS2,SWITCH,K,J$1,I$1,C$1,B,A,OYTPUT,INPU
T:(16(1 S (14 (13(12(11 (1 0(9 (S(7(6 ((4 (3 (2$IF (1 (0$LE 1$20)101)72)(1
$STM4('$STM3 $PHI')1)3)$pHI4)J$2s)I$26)C$27)SWITcH9)K9)J$11 0)I$l
11)C$11 2)B' 3)A14~)OIJTPUT' 5) INPUT' G) 17).

$STM1=(3% $PIl: (((((2$STM2 ('$STM3(0% J$2, I$2, C$2, SWITCH: $PHI 0)1)
2)$OMEGA)$OMEGA)VALC$2)$VAL$SWITCH)3).

$STM20=(1 1 % $PHI,K,J,I,C,B,A,OJTPUT,INPUT: (10(9(9(7(6(5(4(3(2(1(
OREADWRITE STRt.E)C')$PHI 2)K 3)j4)15)C6)B*7)A8)OUTPUT9)INPUT1 0)''

* ~$STM21=(9% $PHI,K,J,I,C,B,A,OUTPUT, INPUT: ((((((('$PHI Ko
*)J 1)52)C3)B4)A5)OUTpUT6)INPUT"7)8).

*$STM24(% $PHI,K,J,I,C,B,A,OYTPUT. INPUT: (7(6 (5 (4 (3 (2 ((O$PHI Ke
)51) 12)C 3)B4)A')OUTPUT6)INPUT7)B S

$STM27=(13% $PHI,K,J,I,C,B,A,OUTPUT. INPUT: (12(1 (1 0(9 ('(2 ('(0SPH
I Kl)J 1)12)(7C(6 (3 (?$REpLACE ('(O$MINUS I')4') 2)63)(S(4C(3(2$RET
RIEVE ('('$MINUS Il)4') 2)63)4)(4 (3 (2$REPLACE ('(0$MINUS J*)4')2)
63)04) 5)6)7)8)B')A1 0)OUTPUT') INPUT' 2)13).

$STM28=(@% $PHI,K,J,I,C,B,A,OUTPUT,INPUT: (7?(6(5(4(3(2(l (0$PHI 50
)J')12)C3)B4)A')OUTPUTS)INPUT7)0)

$STM31=(1 % $PHI,K,J,I,C..B,A,OUTPUT, INPUT: (17(16(15(14(13(2(1 (0$

PHI Kl))1)(12 C(''(3 (z$REPLACE ('('$MINUS Il)4') 2)63)(1*(4C(3 (
2 SRETRIEVE ('(O$MINUS 11)4 1)2)6 3)4)(9 (3 (Z$REPLACE ('('$MINUS J0)
41)2)6 3) (l 6$PLUS (5(4C(3(2$RETRIEVE (l(0 $MINUS 1I)4')2)63)4)(3(
2$RETRIEVE (1 (G$MINUS JG)4 1)2)63)S)6)(7(6$MULT (S(4 A(3 (Z$RETRIEV
E (1(o$MINUS I0)41) 2)63)4)(3(2SRETRIEVE ('('$MINUS K0)41) 2)63)S)
6) ((4B(3(2$RETRIEVE ('('$SMINUS K)4)2)63)4)(3 (2$RETRIEVE (1(0$
MINUS JO)4 1)2)63)5)7)0)9)10)11)'2)1 3)B1 4)A15)OUTPUT'6)INPUT1')1 8

25

$STM32('% $PHI,K,J, I,C,B,A,OUTPUT,INPUT: (9(9('(6 ('(4 (3 (2 $PHI(
'('$PLUS KI)1')2)J 3)14)C5)B6)A7)OUTPUT8)INPUT9)'0).

$STM3O=(z% $PHI:(l$STM31(0 $STM32 $PHIO)1)2).

$STM29=(13% $PiI ,K, J, I,C,B,A,OUTPUT, INPUT: (1 2 Q(' (9(6
(7(6(5(4 (

3 (2$IF (I(G$LE K0)1O') 2)('$STM3O('$STM29 $PHI*)')3)$plI 4)K5)JT)I
7)C)B9)A' 0)OUTPUT') INPUT' 2)13).

$STM33=(% $PHI ,K, J,I, C,B,A, OUTPUT, INPUT: (8(7(6(5(4(3(2(0 $PHI K0

) ('(0$PLUS J9)ll1) 2)13~)C4)B5)AG)OUTPUT) INPUTB9)).

$STM26= (4 % $PHI:(3 SSTM27(2 $STM28Q2$STM29(0$STM33 $PHI0)l)2)3)4).

$STM25=(1 3% $PHI,K,J,I,C-,B.A,OU'TPUT,INPUT: (12(11 (10(9(8(7(6(S(4(3(2 $IF (I(O$LE Jo)1O')2)('$STM26('$STM25 $PHI*)')3)$PHI4)Ks)j 6)I
7)C8)B')A' 0)OUTPUTII1) INPUT' 2) 13).

$STM34=(9% $PHI,K.,J,I,C,B,A,OUTPUT,INPUT: ('(6 (S(4(3(2(1'$PHI K'
)J')(2(0$PLUS Ia)1') 2)C3)B 4)A5)OUTPUTG)INPUT7)8).

$STM23=(3% $PHI:(2 $STM24QS$STM25('$STM34 $PHI0)')2)3).

$STM22=(1 3% $PHI,K,J,I,C,B,A.OUTPUT, INPUT: (12(11(10(9(8(7(6(5(4(
3 (2S1F ('(0 $t.E ID)1O') 2)('SSTM23(0 $STM22 $PHII)')3)$PH14)Ks)JT6)I
7)C')B)A' 0)OUTPUT) INPUT' 2) 13).

$ST?35=(' (READWRITE $FALSE0)C').

SSTM19=(5% $PHI:(((((((((4 $STM2O(3$STM21(2$STM22('$STM35(0 % K,J,
I,C,B,A,OUTPUT,INPUT:$PHI0)') 2)3)')$OMEGA)$OMEGA)SOMEGA)(2-('(0 $T
UPINIT 20)61)6 2))(2 ('(O$TUPINIT 21)6')62))(Z('(0 $TTJPINIT 2')61)6
2))$OMEGA)SOMEGA)S).

SPROGRAI'F(($STM19 $ID)$ID).

26

PART 2: THE COMPILER

2.1. Features and Organization

The compiler itself is written in standard PASCAL. It is a
one pass translator, with the following well-distinguished
execution phases:

-- lexical scanning by means of a finite state
machine.

-- attributed LL(1) parsing for syntactic analysis
and semantic activities , including type-checking
procedures.

-- generation of lambda-expressions, employing a
garbage collecting system for character strings of
dynamic lengths.

Due to the size and sparseness of the transition tables of
both the finite state automaton and the pushdown machine
correspondiong to the LL(1) grammar (73 possible stack symbols
and 50 input tokens), implicit program code was used to realize
the automata.

The compiler generates a source program listing which
includes: accumulated statement counts, accumulated semicolon
counts, block levels, depths of nested loops, and of compound
and case statements. The compiler can also produce a cross-
reference of all identifiers with respect to the semicolon
counts of their occurrences and a specification of their
explicit types. Context-sensitive error messages are recorded on
a temporary file which is finally appended to the source
listings. Currently, three compiler options are supported which
may be specified in the usual way within comment braces [5]: X±,
S±, and U±. X- will supress the printing of the cross-reference,
S+ will extend the syntax of the language accepted (see formal
parameters and function declarations), and U+ will cause the
compiler to attach superscripts to paired parenthesis in the
code generated. The default values of these options are"(*$X ,S ,U-*)"

2.2. The Lexical Scanner

The lexical scanner advances through the input stream of
characters until it recognizes a new token which it passes to
the parser [7]. There are 50 different (parameterized) tokens
which become the terminals of the later LL(1) grammar. Some have
an associated parameter value. This value does not influence theparse but is used in later tasks. From a theoretical point of

pasascae aaee au.Thsvlede o nlec h

27

view, each token and its parameter value are obtained by a
single finite automaton, and the complete lexical scanner is
just a parallel composition of these. The two most important
automata are the identifier scanner and number scanner.

2.2.1. Identifiers

This compiler distinguishes PASCAL identifiers by their
first ten characters, which are entered into a hashing table and
eventually padded by blanks. The hashing function is the sum of
the numerical codes of the first, second, fourth and fifth
character modulo a prime number which is close to half of the
size of the whole table. Hashing collisions are resolved by a
chaining algorithm using the second half of the hashing takle as
overflow area. The parameter value of the token IDENTIFIER is
the hashed table index of each recognized identifier. If there
is no danger of ambiguities, identifiers and their corresponding
hashing table indices are not distinguished any further.

Keywords cannot be used as identifiers. A binary search is
conducted through an alphabetically sorted table of the 35

* standard PASCAL keywords, and all but four (the operators AND,
MOD, DIV, and IN) become tokens themselves.

2.2.2. Numbers

The compiler contains an explicit finite automaton to
accept numbers [7]. In the following transition table each
output symbol (denoted by a lower case letter) corresponds to a
certain action specified below the table. The initial state is
1, and the final ("accepting") state 0:

STATE vs. INPUT CHARACTER

'0'..'9' '' I 'E' I'+', '-' others IF I I I
1 1 a 2 d 4 c I 0b 0 b II II I I +
2 3 c 0 e I 0e I 0 0e III II+ '1
3 3 d 0 d 4 d I0 d 0 dl

4 6 d 0 f 10 f (5 d Of 0+ + 4 I
5 6 d 0 f 10 f 10 f 0 f I1.-I + + + I
6 6 d 0 d I 0d I 0d 0 dl

Actions:
a) Record a new digit in the integral part of num-

ber.

28

b) Unsigned integer terminated.
c) Unsigned real without fractional part encount-

ered.
d) Process fractional and exponential part in un-

signed real number.
e) If current character ')' then unsigned integer

terminated and current character := 1'.
If current character = '.' then unsigned integer
terminated and current character := double dot.
Otherwise proceed like f).

f) Error in real constant: Digit expected but not
found.

Two tokens, viz. UNSGINTEG and UNSGREAL, correspond to
unsigned integers and real numbers, resp. . Their parameters
contain their actual numerical value. Signs will be
distinguished from "adding operators" on a later grammatical
level.

There are six separate tokens for the various PASCAL
operators. However, some may also serve another syntactic
purpose. E.g. EQUALSYM in definitions of constants and types or
PLUSMINUS in signed numbers.

Token: Meaning of parameter values:

NOTSYM None.
PLUSMINUS 1: '+', 2: '-'
ORSYM None.
MULTOPER 1: '*', 2: '/'• 3: DIV, 4: MOD, 5: AND.
EQUALSYM None.
RELOPER 2: '<>', 3: '<' 4: '>', 5: '<=', 6: '>=', 7: IN.

All literals are collected in a vector of characters, whichis MAXSTRGL long. The token STRINGSYM associates the entry of a
certain literal by its parameter field in the following fashion:

Parameter value = starting index * MAXSTRGL + length.

The remaining tokens correspond to special symbols without
parameter values:

LPARASYM: '(', RPARASYM: ')', LBRACKSYM: '[', RBRACKSYM: ']'
SEMICSYM: COMMASYM: ',' PERIODSYM: '' DOUBLEDOT: '
COLONSYM: ':' BECOMES: ':' POINTER: PASCAL pointer symbol.

Brackets may be also written as '(.' and '.)'. Comments are
enclosed by braces or by '(*' and '*)'. The pointer symbol of
this implemention is the ampersand.

29

2.3. An LL(1) Grammar for Standard PASCAL

Before proceeding with a compendious description of the at-
tributed LL(1) translation, the underlying context-free grammar
itself shall be scrutinized. It consists of 57 non-terminals, 50
terminals (namely all tokens described in section 2.2) and 135
productions. All but one non-terminnal yield disjoint selection
sets [7] for different productions. The selection sets of the
productions

(i) <else clause> ELSESYM <statement>.
(ii) <else clause> ::= <empty>.

are (ELSESYMI for (i) and {ENDSYM, SEMICSYM, UNTILSYM, ELSESYMI
for (ii). This is a consequence of the well-known ambiguity

if el then if e2 then S1 else S2.

By definition [5], each else clause is paired with the last
unmatched then clause. This is equivalent to removing the
ELSESYM from the selection set of (ii). With respect to this
modification the grammar becomes LL(l) [7.*

Now the complete grammar shall be given in BNF notation. In
addition, the selection set of each production will be specified
unless its right-hand side starts with a terminal. (In this
case, the terminal is the only element of its selection set.)
The starting symbol is <program>:

(1) <identifierlist> COMMASYM IDENTIFIER <identifierlist>.

(2) <identifierlist> <empty>.
Selset(2) = [RPARASYM, SEMICSYM, COLONSYM).

(3) <labeldclremainder> ::= COMMASYM UNSGINTEG <labeldclre-
mainder>.

(4) <labeldclremainder> SEMICSYM.

(5) <labeldeclaration> :: LABELSYM UNSGINTEG <labeldclre-
mainder>.

(6) <labeldeclaration> ::= <empty>.
Selset(6) = {CONSTSYM, TYPESYM, VARSYM, PROCSYM, FUNCSYM,

BEGINSYMI.

(7) <nonidentconstrem> ::= IDENTIFIER.

* It is not known to us whether there exists a "pure" LL(1)
grammar for standard PASCAL. E.g. ALGOL 60 is known to be
"inherently non-LL(1)" [6.

30

(8) <nonidentconstrem> UNSGINTEG.

(9) 4nonidentconstrem> UI4SGREAL.

(10) <nonidentconstant> PLUSMINUS <nonidentconstrem>.

(11) <nonidentconstant> UNSGINTEG.

(12) <nonidentconstant> UNSGREAL.

(13) <nonidentconstant> STRINOSYM.

(14) <constant> IDENTIFIER.

(15) <constant> <nonidentconstant>.
Selset(15) = tUNSGINTEG, PLUSMINUS, IJNSGREAL, STRINGSYMJ.

(16) <constantlist> COMMASYM <constant> <constantlist>.

(17) <constantlist> <empty>.
Selset(17) = [COLONSYMI.

(18) <constdefinpartrem> IDENTIFIER EQUALSYM <constant>
SEMICSYM <constdefinpartrem>.

(19) <constdefinpartrem> <empty>.
Selset(19) = ITYPESYM, VARSYM, PROCSYM, FUNCSYM, BEGINSYMI.

(20) <constantdefinpart> :=CONSTSYM IDENTIFIER EQUALSYM <cons-
tant> SEMICSYM <constdefinpartrem>.

(21) <constantdefinpart> <empty>.
Selset(21) = ITYPESYM, VARSYM, PROCSYM, FUNCSYM, BEGINSYMI.

(22) <simpletyperemaind> DOUBLEDOT <constant>.

(23) <simpletyperemaind> <empty>.
Selset(23) = JRPARASYM, SEMICSYM, COMMASYM, RBRACKSYM,

ENDSYM).

(24) <simpletype> LPARASYM IDENTIFIER <identifierlist>
RPARASYM.

(25) <simpletype> IDENTIFIER <simpletyperemaind>.

(26) <simpletype> <nonidentconstant> DOUBLEDOT <constant>.
Selset(26) = UNSGINTEG, PLUSMINUS, UNSGREAL, STRINGSYMI.

(27) <simpletypelist> COMMASYM <simpletype> <simpletype-
list>.

31

(28) <simpletype].ist> <empty>.
Selset(28) I RBRACKsymJ.

(29) <variant> <constant> <constantlist> COLONSYM LPARASYM
<fieldlist> RPARAsym.

Selset(29) [IDENTIFIER, UNSGINTEG, PLUSMINUS, UNSGREAL,
STRINGSYMI.

(30) <variant> <empty>.
Selset(30) = RPARASYM, SEMICSYM, ENDSYMJ.

(31) <variantlist> SEMICSYM <variant> <variantlist>.

(32) <variantlist> <empty>.
Selset(32) = IRPARASYM, ENDSYMJ,

(33) <tagfieldremainder> COLONSYM IDENTIFIER.

(34) <tagfieldremainder> <empty>.
Selset(34) = {OFSYM].

(3S) <fieldlistremaind> SEMICSYM <fieldlist>.

(36) <fieidlistremaind> <empty>.
Selset(36) = JRPAASYM, ENDSYM).

(37) <recordsection> ::= IDENTIFIER <identifierlist> COLONSYM
<type>.

(38) <recordsection> :=<empty>.
Selset(38) = IRPARASYM, SEMICSYM, ENDSYMJ.

(39) <fieldlist> ::= <recordsection> <fieldlistremaind>.
Selset(39) = [IDENTIFIER, RPARASYM, SEMICSYM, ENDSYMI.

(40) <fieldlit> :=CASESYM IDENTIFIER <tagfieldremainder> OF-
SYM <variant> <variantlist>.

(41) <unpackstructtype> ARRAYSYM LBRACKSYM <simpletype>
<simpletypelist> RBRACKSYM OFSYM
<type>.

(42) <unpackstructtype> RECORDSYM <fieidlist> ENDSYM.

(43) <unpackstructtype> FILESYM OFSYM <type>.

(44) <unpackstructtype> SETSYM OFSYM <simpletype>.

32

(45) -type> :=<simp].etype>.
Selset(45) = (IDENTIFIER, LPARASYM, UNSGINTEG, PLUSMINUS,

UNSGREAL, STRINGSYMI.

(46) <type> PACKEDSYM <unpackstructtype>.

(47) <type> <unpackstructtype>.
Selset(47) = JARRAYSYM, RECORDSYM, FILESYM, SETSYMI.

(48) <type> :=POINTER IDENTIFIER.

(49) <typedefinpartrem> IDENTIFIER EQUALSYM <type> SEMICSYM
<typedefinpartrem>.

(SO) <typedefinpartrem> <empty>.
Selset(50) = JVARSYM, PROCSYM, FUNCSYM, BEGINSYMI.

(51) <typedefinitionprt> TYPESYM IDENTIFIER EQUALSYM <type>
SEMICSYM <typedefinpartrem>.

(52) <typedefinitionprt> <empty>.
Selset(52) = fVARSYM, PROCSYM, FUNCSYM, BEGINSYM).

(53) <variabledclprt-em> IDENTIFIER <identifierlist> COLON-
SYM <type> SEMICSYM <variabledcl-
prtrem>.

(54) <variabledclprtrem> <empty>.
Selset(54) = IPROCSYM, FUNCSYM, BEGINSYMI.

(55) <variabledeclarprt> VARSYM IDENTIFIER <identifierlist>
COLONSYM <type> SEMICSYM <variable-
dclprtrem>.

(56) <variabledeclarprt> <empty>.
Selset(56) = JPROCSYM, FUNCSYM, BEGINSYMI.

(57) <formalparameter> IDENTIFIER <identifierlist> COLONSYM
IDENTIFIER.

(58) <formalparameter> VARSYM IDENTIFIER <identifierlist>
COLONSYM IDENTIFIER.

If the compiler option S+ is activated, an explicit <type>
will be accepted in formal parameters (productions 57 and 58).
Any implicitely defined scalar identifiers within this <type>
are then global to the scope of the procedure or function body.
No pointer references are forwarded.

33

(59) <formalparameter> FUNCSYM IDENTIFIER <identifierlist>
COLONSYM IDENTIFIER.

(60) <forma3.parameter> PROCSYM IDENTIFIER <identifierlist>.

(61) <formparameterlist> SEMICSYM <formalparameter> <form-
parameterlist>.

(62) <formparameterlist> <empty>.

Selset(62) = [RPARASYMI.

(63) <formparameterpart> LPARASYM <formalparameter> <form-
parameterlist> RPARASYM.

(64) <formparameterpart> <empty>.

Selset(64) = ISEMICSYM, COLONSYM).

(65) <procfuncdeclarat> PROCSYM IDENTIFIER <formparameter-
part> SEMICSYM <block>.

(66) <procfuncdeclarat> FUNCSYM IDENTIFIER <formparameter-
part> COLONSYM IDENTIFIER SEMICSYM
<block>.

If the compiler option S+ is activated, an explicit <type>
will be accepted in the function return type. Any implicitely
defined scalar identifiers within this <type> are then global to
the scope of the function body. No pointer references are
forwarded.

(67) <procfuncdcJlpart> :=<procfuncdeclarat> SEMICSYM <proc-
funcdclpart>.

Selset(67) = JPROCSYM, FUNCSYM).

(68) <procfuncdclpart> :=<empty>.
Selset(68) = [BEGINSYMI.

(69) <expressionlist> :=COMMASYM <expression>.

(70) <expressionlist> :=<empty>.
Selset(70) = fRPARASYM, RBRACKSYM).

(71) <variableselector> LBRACKSYM <expression> <expression-
list> RBRACKSYM <variableselector>.

(72) <variableselector> PERIODSYM IDENTIFIER <variablese-
lector>.

(73) <variableselector> POINTER <variableselector>.

34

(74') <variableselector> <empty>.
Selset(74) = RPARASYM, SEMICSYM, COMMASYM, EQUALSYM,

RBRACKSYM, DOUBLEDOT, BECOMES, DOSYM, OFSYM,
ORSYM, TOSYM, ENDSYM, ELSESYM, THENSYM,
UNTILSYM, DOWNTOSYM, PLUSMINUS, RELOPER,
MTLTOPER1.

(75) <actparameterpart> LPARASYM <expression> <expression-
l.ist> RPARASYM.

(76) <identifierremaind> <variableselector>.
Selset(76) =IPERIODSYM, RPARASYM,- SEMICSYM, COMMASYM,

EQUALSYM, LBRACKSYM, RBRACKSYM, DOUBLEDOT, DO-
SYM, OFSYM, ORSYM, TOSYM, ENDSYM, ELSESYM,
THENSYM, UNTILSYM, DOWNTOSYM, POINTER, PLUS-
MINUS, RELOPER, MULTOPER).

(77) <identifierremaind>:= <actparameterpart>.
Selset(77) = ILPARASYMJ.

(78) <setelementremaind> DOUBLEDOT <expression>.

(79) <setelementremaind> <empty>.
Selset(79) = [COMMASYM, RBRACKSYM).

(80) <setelement> :=<expression> <setelementremaind>.
Selset(80) = ILPARASYM, NOTSYM, STRINGSYM, PLUSMINUS,

IDENTIFIER, UNSOINTEGI.

(81) <setelementit> : COMMASYM <setelement> <setelement-
list>.

(82) <setelementlist> <empty>.
Selset(82) = RBRACKSYMI.

(83) <aetranqe> ::= <setelement> <setelementlist>.
Selset(83) = LPARASYM, NOTSYM, STRINGSYM, PLUSMINUS,

IDENTIFIER, UNSGINTEGI.

(84) <setrange) : <empty>.
Selset(84) = RBRACKSYM).

(85) <factor> NOTSYM <factor>.

(86) <factor> IDENTIFIER <identifieremaind>.

(87) <factor> STRINGSYM.

(88) <factor> UNSGINTEG.

(89) <factor> UNSGREAL.

35

(90) <factor> NILSYM.

(91) <factor> LBRACKSYM <setrange> RBRACKSYM.

(92) <factor> LPARASYM <expression> RPARASYM.

(93) <factorlist> MULTOPER <factor> <factorlist>.

(94) <factorlist> <empty>.
Selset(94) = JRPARASYM, SEMICSYM, COMMASYM, EQUALSYM,

RBRACKSYM, DOUBLEDOT, DOSYM, OFSYM, ORSYM,
TOSYM, ENDSYM, ELSESYM, THENSYM, UNTILSYM,
DOWNTOSYM, PLUSMINUS, RELOPER].

(95) <term> ::= <factor> <factorlist>.
Selset(95) = LPARASYM, LBRACKSYM, NILSYM, NOTSYM, STRING-

SYM, IDENTIFIER, UNSGREAL, UNSGINTEG].

(96) <termjlist> PLUSMINUS <term> <termlist>.

(97) <termlist> ORSYM <term> <termlist>.

(98) <termlist> <empty>.
Selset(98) = RPARASYM, SEMICSYM, COMMASYM, EQUALSYM,

RBRACKSYM, DOUBLEDOT, DOSYM, OESYM, TOSYM,
ENDSYM, ELSESYM, THENSYM, UNTILSYM, DOWNTO-
SYM, RELOPER).

(99) <simpleexpression> PLUSMINUS <term>.

(100) <simpleexpression> <term> <termlist>.
Selset(100) = JLPARASYM, LBRACKSYM ' NILSYM, NOTSYM,

STRINGSYM, IDENTIFIER, UNSGREAL, UNSG-
INTEGI.

(101) <simpleexpressrem> :=EQUALSYM <simpleexpression>.

(102) <simpleexpressrem> RELOPER <simpleexpression>.

(103) <simpleexpressrem> <:=empty>.
Selset(103) = JRPARASYM, SEMICSYM, COMMASYM, RBRACIKSYM,

DOUBLEDOT, DOSYM, OPSYM, TOSYM, ENDSYM,
ELSESYM, THENSYM, UNTILSYM, DOWNTOSYM].

(104) <expression> : <simpleexpression> <simpleexpressrem>.
Selset(104) = ILPARASYM, LBRACKSYM, NILSYM, NOTSYM,

STRINGSYM, PLUSMINUS, IDENTIFIER, UNSOREAL,
UNSGINTEG).

36

(105) <simplestatemntrem> <variableselector> BECOMES <ex-
pression>.

Selset(105) = tPERIODSYM, LBRACKSYM, POINTER, BECOMES).

(106) <simplestatemntrem> : <actparameterpart>.
Selset(106) = [LPARASYMI.

(107) <simplestatemntrem> :=<empty>.
Selset(107) = ISEMICSYM, ENDSYM, UNTILSYM, ELSESYMI.

(108) <compoundstmntrem> ::= SEMICSYM <statement> <compound-
stmntrem>.

(109) <compoundstmntrem> := ENDSYM.

(110) <elseclause> ELSESYM <statement>.

(111) <elseclause> <empty>.
Selset(111) = SEMICSYM, ENDSYM, UNTILSYM].

(112) <caseelement> :=<constant> <constantlist> COLONSYM
<statement>.

Selset(112) = IDENTIFIER, UNSGINTEG, PLUSMINUS, UNSGREAL,
STRINGSYMI.

(113) <caseelement> :=<empty>.
Selset(113) = ISEMICSYM, ENDSYMj.

(114) <caseelementlist> SEMICSYM <caseelement> <caseelement-
list>.

(115) <caseelementlist> ENDSYM.

(116) <repeatstatemntlst> SEMICSYM <statement> <repeatstmnt-
list>.

(117) <repeatstatemntlst> :=UNTIL.

(118) <forstatementrem> :=TOSYM <expression> DOSYM <state-
ment>.

(119) <forstatementrem> DOWNTOSYM <expression) DOSYM <state-
ment>.

(120) <withvariablelist> COMMASYM IDENTIFIER <variablese-

(121) <withvariablelist> DOSYM.

(122) <unlabeledstatemnt> IDENTIFIER <simplestatemntrem>.

37

(123) <unlabeledstatemnt> BEGINSYM <statement> <compound-
stmntrem>.

(124) <unlabeledstatemnt> IFSYM <expression> THENSYM <state-
ment> <elseclause>.

(125) <unlabeledstatemnt> CASESYM <expression> OFSYM <case-
element> <caseelementlist>.

(126) <unlabeledstatemnt> WHILESYM <expression> DOSYM
<statement>

(127) <unlabeledstatemnt> REPEATSYM <statement> <repeat-
statemntlst> <expression>.

(128) <unlabeledstatemnt> FORSYM IDENTIFIER BECOMES <expres-
sion> <forstatementrem>.

(129) <unlabeledstatemnt> WITHSYM IDENTIFIER <variableselec-
tor> <withvariablelist> <state-
ment>.

(130) <unlabeledstatemnt> GOTOSYM UNSGINTEG.

(131) <unlabeledstatemnt> <empty>.
Selset(131) (SEMICSYM, ENDSYM, ELSESYM, UNTILSYMI.

(132) <statement> UNSGINTEG COLONSYM <unlabeledstatemnt>.

(133) <statement> <unlabeledstatemnt>.
Selset(133) [IDENTIFIER, SEMICSYM, ENDSYM, CASESYM, BE-

GINSYM, IFSYM, WHILESYM, REPEATSYM, FORSYM,
WITHSYM, GOTOSYM, ELSESYM, UNTILSYMI.

(134) <block> :=<labeldeclaration> <constdefinpart> <type-
definitionprt> <variabledeclarprt> <proc.Lunc-
declarat> BEGINSYM <statement> <compoundstmnt-
rem>.

Selset(134) = ILABELSYM, CONSTSYM, TYPESYM, VARSYM, PROC-
SYM, FUNCSYM, BEGINSYM).

(135) <program> :=PROGRANSYM IDENTIFIER LPARASYM IDENTIFIER
<identifierlist> RPARASYM SEMICSYM <block>
PERI ODSYM.

The transition table of the corresponding one-state
pushdown automaton is about 33 print pages long. This table has
been produced by a program which inspects given context-free
grammars for being LL(1).

38

2.4. An Attributed Translation of Lists

The syntax of PASCAL is rich in lists of certain entities
(e.g. identifier list, constant list, simple type list,
expression list, simple type list, formal parameter list,
variant list, etc.). One general scheme applies throughout the
tranlation: Let us assume first that the non-terminals <entity>,
<list> and <item> have the following synthesized and inherited
attributes [71:

DESCR a data structure containing the description of any
item (synth.).

FIRST, SEC... same as DESCR (inher.).
HEAD The head pointer to a list of all item DESCRs

(synth.).
CAR, CDR pointers to lists of item DESCRs (synth.).

A suitable translation grammar [7] to build a list of item
descriptors follows. Action symbols will be surrounded by
dashes:

(i) <entity>(HEAD) ::= <item>(FIRST) <list>(FIRST,HEAD).
(ii) <list>(FIRST,CAR) :: <separator> <item>(SEC)

<list>(SEC,CDR) -action-.
(iii) <Iist>(FIRST,CAR) :: <terminator> -CDR:=nil- -action-.

Where -action- means:

-allocate CAR and put FIRST into it; catenate CDR to it-.

This particular grammar yields a simple method for
recovering from a syntactic error: Suppose <list> is called but
neither a <separator> nor a <terminator> appear as input tokens.Then CAR can be set to nil and the error handler may advance the
input stream to a global synchronization symbol such as a

SEMICSYM (see also section 2.8).

2.5. The Main Data Structures Needed in Translation

Each block of the source program may introduce a new set of
identifiers which must be disregarded when the parsing of this
block is completed. A record describing each new identifier will
contain the block level number of this identifier. It is pushed
onto a stack of identifier descriptors as soon as the referred
identifier is sufficiently defined. On leaving a block, all
identifier descriptors of its level are popped off this stack.
In order to find an identifier descriptor within this stack, its
position is entered into the identifier's hashing table element.
Should there already be an address of an identifier defined at a
lower block level, a stacking mechanism is invoked. It should be
noticed that this algorithm reduces the search, time for an
identifier to a look-up in the hashing table. Predefined ident-

39

ifiers are pushed onto this stack at the very beginning of the
parse and possess the level number zero.

Six classes of identifiers are distinguished. Identifiers
may denote scalars, types, variables, record fields, procedures,
or functions. An identifier description record contains the
following fields (some will be pointers to a record describing a
certain type which will be discussed below):

IDNR the hashing index of the referenced identifier.
LEVNR the block level of its definition.
IDCLASS... the class it belongs to.

Depending on the value of the field IDCLASS, the descriptor
recordcontains the following additional fields:

For a scalar identifier:
STYP.... a pointer to its (scalar) type descriptor.
VALUE... its cardinality.

For a type identifier:
TYP... a pointer to the type it denotes.

For a variable:
TYP a pointer to its type descriptor.
PARM... a flag signalling whether it is a formal parameter

and if so what kind of parameter it is (variable or
value).

For a record field:
TYP... a pointer to its type record.

For a procedure or function:
ARGTYPS a list of type records for its parameters.
SWFORW a flag signalling whether forward declared.
FORWARGS... a list of identifier descriptors for all formal

parameters in case of forward declaration. These
records will be pushed onto the stack as soon as
the procedure or function body is specified.

RETTYP the function's return type.
PARM a flag similar to the PARM field in a variable.

There are five types, namely scalar, array, record and
pointer types, and the undefined type. + Each type record
contains a switch telling which class the type belongs to and
the following corresponding fields:

+ The compiler does not yet support set and file types. They are
treated as undefined types.

40

For a scalar type:
SCIDNR its type identifier's hashing index.
SCLEVNR the level of its definition.
LOWBND, HIGBND... its range of cardinalities.

No distinction is made between subrange types and their
matching scalar types (encompassing the full range). The type
INTEGER at level zero ranges over -MAXINT .. MAXINT. The type
REAL at level zero has no associated bounds. If no explicit
type identifier is given, a unique identifier "$IMPLTn"
(where n is a certain number) will be used instead. The
compiler internally translates a label N into a scalar ident-
ifier '$LABELN' and gives it the scalar type 'LABEL' of level
zero ranging from 1 to 9999.

For an array type:
INDXTYP... the (scalar) type record of the array index.
COMPTYP... the type record of the array component.
SWPACK a flag signalling whether the array is packed.

Matrices and multidimensional arrays will always obtain an
array type as their component types. E.g. array [itl, it2] of
t will become array [itl] of array [it21 of t.

For a record type:
SECTNS... a list of field identifier descriptors.
SWPACK... a flag signalling whether the record is packed.

For a pointer type:
PTRIDNR referenced type identifier.
REFERTYP... referenced type record.

This compiler treats all pointer type references as
forward defined. A list of all unresolved pointer type
records is kept until all type definitions are parsed. Then
the appropriate type record pointers corresponding to PTRIDNR
are assigned to REFERTYP.

For of the undefined type class:
UNDFIDNR... the undefined type identifier (if known).

From a theoretical point of view all compiler routines
taking type descriptors as arguments (e.g. the type checking
facilities) are partial functions in the sense that a single
argument of the undefined type forces all results to be of
this type also.

In order to reduce the number of attributes attached to
symbols of the grammar involving the parsing of expressions, a
global stack is constructed to serve the following purpose: Each

+ We believe that this is a natural resolution of the following
ambiguity in PASCAL: Given Iye R = record F:...; G: @R end,
then G should refer to R itself rather than a different type R
defined on a lower block level.

41

stack element contains a flag which is set to false unless the
expression currently derived is a single variable. Immediatly
after the parse of an expression is completed the top element of
this stack may be saved for later inspection. Thus non-variable
arguments are discovered in place of variable parameters. The
compiler actually uses a doubly linked list in order to re-use
popped off stack elements.

2.6. Strings of Fluid Length

This compiler utilizes a garbage collection system for
character strings of fluid lengths. By this we mean that
whenever during manipulation a string would become longer than
the space reserved for it, it is re-allocated and its old
position released for garbage collection.

The compiler builds the object code by a recursive process
very similar to the representation rules of part one. Thus the
final length of a string of lambda-calculus code can by no means
be estimated beforehand. The string management subsystem is
considered to be an essential tool for successful code
generation. It resides completely independently of the
compilation routines, and it can be used whenever it is required
to work with strings whose lengths cannot be determined prior to
their actual use.

The contents of all strings in use are put into a common
area of core -- for instance a very long string itself. Then
every string may be referred to by a record containing its
starting address in the string workspace, its current length,
the space currently reserved for it, and a marker signalling
whether it is in use or free to be re-used. The system provides
procedures for allocating new strings, assigning literals and
other strings to strings, concatenating strings and releasing
occupied string space. All string description records are linked
together in a list for garbage collection purposes. As soon as a
string is to be allocated but no more workspace is available,
three passes of garbage collection and storage compaction are
attempted to recover space for this request: first the list of
string descriptors is searched for a string large enough to
satisfy the request. If this does not succeed, then as many
unused strings as necessary are removed from the list and the
workspace is properly compacted. Finally a necessary amount of
strings may have their allocated lengths reduced to their
current lengths.

2.7. Summary of Attributes

Any symbol of a translation grammar may have one or several
attributes associated with it [7]. The following briefly
describes the meaning of these attributes with respect to the
grammatical symbols, and whether they are inherited or syn-

42

thesized:

<identifierlist>(FIRSTIO, CARIDLST):
FIRSTID identifier index (inher.).
CARIDLST list of identifiers (synth.).

<nonidentconstrem>(SIGN, CONSTYP, CONSVAL):
SIGN sign of non identifier constant (inher.).
CONSTYP pointer to its type record (synth.).
CONSVAL its explicit value (synth.).

<nonidentconstant>(CONSTYP, CONSVAL):
Same as for <nonidentconstrem> (both synth.).

<constant>(CONSTYP, CONSVAL):
Same as for <nonidentconstrem> (both synth.).

<constantlist>(FIRSTTYP, FIRSTVAL, CARCONSLST, MATCHTYP):
FIRSTTYP pointer to type record (inher.).
FIRSTVAL explicit value of constant (inher.).
CARCONSLST.. list of explicit values of constants (synth.).
MATCHTM.... pointer to a (scalar) type record which must

match to all constant types incl. FIRSTTYP
(inher.).

<simpletyperemaind>(FIRSTID, RETTYP, REFID):
FIRSTID identifier which begins <type> (inher.).
RETTYP pointer to completed type record (synth.).
REFID index of type identifier which is to be defined

(if explicit type definition, otherwise zero);
necessary for scalar types. (inher.).

<simpletype>(RETTYP, REFID):
Same as for <simpletyperemaind>.

<simpletypelist>(FIRSTTYP, CARSMPLST, SWPACK)
FIRSTTYP pointer to type record (inher.).
CARSMPLST... list of (scalar) type records (synth.).
SWPACK flag whether corresponding array is packed or

not (iher.).

<variant>(RECLST, MATCHTYP):
RECLST list of field identifier descriptors (synth.).
MATCHTYP type record of preceeding tag field (inher.).

<variantlist>(FIRSTVAR, CARRECLST, MATCHTYP):
FIRSTVAR list of field identifier descriptors (inher.).
CARRECLST... list of field identifier descriptors (synth.).
MATCHTYP type record of preceeding tag field (inher.).

43

<tagfieldremainder>(FIRSTID, REC, MATCHTYP):
FIRSTID..... identifier which begins tag field (inher.).
REC tag field identifier descriptor (if any other-

wise nil) (synth.).
MATCHTYP pointer to type record of tag field (synth.).

<fieldlistremaind>(RECLST):
RECLST list of field identifier descriptors (if any

otherwise nil) (synth.).

<recordsection>(RECLST):
Same as for <fieldlistremaind>.

<fieldlist>(FLDLST):
FLDLST list of field identifier descriptors (synth.).

<unpackstructtype>(RETTYP, SWPACK, REFID):
RETTYP pointer to complete type record (synth.).
SWPACK flag whether type is packed or not (inher.).
REFID same as REFID in <simpletypremaind> (inher.).

<type>(RETTYP, REFID):
Same as in <unpackstructype>.

<formalparameter>(RETARG, RETACT):
RETARG type record pointer list of parameters as re-

quired in the ARGTYPS field of a procedure or
function identifier description. (synth.).

RETACT list of parameter desriptions (synth.).

<formparameterlist>(FIRSTARG, FIRSTACT, CARARGLST, CARACTLST):
FIRSTARG list of type record pointers (inher.).
FIRSTACT list of identifier record pointers (inher.).
CARARGLST... list of parameter types (synth.).
CARACTLST... list of parameter descriptions (synth.).

<formparameterpart>(ARGLST, ACTLST):
ARGLST list of all parameter types (if any otherwise

nil) (synth.).
ACTLST list of all parameter descriptions (if any

otherwise nil) (synth.).

<expressionlist>(FIRSTCOD, FIRSTTYP, FIRSTSWVAR, CAREXPLST):
FIRSTCOD string pointer (see section 2.6) (inher.).
FIRSTTYP type record pointer (inher.).
FIRSTSWVAR.. flag whether expression is a variable or not;

necessary to determine if an argument is a vari-
able (inher.).

CAREXPLST... list of expression constituents which consist of
their type records, string pointers to their
code and "variable flags" like FIRSTSWVAR above
(synth.).

44

<variableselector>(SWASSIGN, REPLLST, CODIN, TYPIN,
CODOUT, TYPOUT):

SWASSIGN flag signalling if called at left hand side of
assignment (inher.).

REPLLST list of subscripts and array bounds in case
SWASSIGN is true; needed to compile according to
the last representation rule of section 1.7
(inher. and synth.).

CODIN string pointer to current code (inher.).
TYPIN type record pointer of current type (inher.).
CODOUT string pointer to new code (synth.).
TYPOUT type record pointer of new type (synth.).

<actparameterpart>(ACTEXPLST):
ACTEXPLST... same as CAREXPLST in <expressionlist>.

<identifierremaind>(ID, CODOUT, TYPOUT):
ID identifier in front of it (inher.).
CODOUT, TYPOUT.. same as in <variableselectors>.

<factor>(FACCOD, FACTYP):
FACCOD string pointer to code of factor (synth.).
FACTYP type record pointer of its type (synth.).

<factorlist>(PRIORCOD, PRIORTYP, RETCOD, RETTYP):
PRIORCOD string pointer (inher.).
PRIORTYP type record pointer (inher.).
RETCOD string pointer to complete code of factors

(synth.).
RETTYP type record pointer of their resulting type

(synth.).

<term>(TERMCOD, TERMTYP):
Similar to attributes of <factor>.

<termlist>(PRIORCOD, PRIORTYP, RETCOD, RETTYP):
Similar to attributes of <factorlist>.

<simpleexpression>(SEXPCOD, SEXPTYP):
Similar to attributes of <factor>.

<simpleexpressrem>(PRIORCOD, PRIORTYP, RETCOD, RETTYP):
Similar to attributes of <factorlist>.

<expression>(EXPCOD, EXPTYP):
EXPCOD string pointer to expression code (synth.).
EXPTYP pointer to its type record (synth.).

<simplestatemntrem>(ID):
ID identifier in front of it (inher.).

45

<compoundstmntrem>(FIRSTSTMNR, COMPSTMCOD):
FIRSTSTMNR.. statement number (inher.).
COMPSTMCOD.. string pointer to code of compound statement

(see also section 1.6) (inher. and synth.).

<elseclause>(ELSESTMNR):
ELSESTMNR... statement number (inher.).

<caseelement>(CONSLST, MATCHTYP):
CONSLST list of explicit values of case labels (synth.).
MATCHTYP pointer to a (scalar) type record which must

match all case label types (inher.).

<caseelementlist>(FIRSTCONSLST, CARCONSLST, MATCHTYP):
FIRSTCONSLST.. list of expl. values of case labels (inher.).
CARCONSLST.. list of expl. values of all case labels(synth.).
MATCHTYP.... same as in <caseelement>.

<forstatementrem>(CONTRTYP):
CONTRTYP.... type rec. pointn-r of control variable (inher.).

Each terminal (viz. each token) has only one (synthesized)

attribute: its parameter value, if any was assigned.

2.8. Error Diagnostics and Error Recovery

The error diagnostic routines take advantage of the LL(1)
property of the underlying grammar. Illegal tokens are dis-
covered as soon as they are obtained [7] namely if they are not
contained in the selection set of a non-terminal which is to be
derived. A typical error message is thus

"VARIABLESELECTOR STARTS WITH IDENTIFIER"

or if terminals do not match

"- EXPECTED, BUT : FOUND"

All other error messages are adjusted to standard PASCAL [5)
though their text usually includes some specific information
such as an incorrectly used identifier. The error messages are
enumerated according to [5].

The error recovery is probably the most complicated process
of this compiler. Some general guidelines are explained now, but
for more details the reader is referred to the compiler source.
The lexical scanner treats illegal characters like blank spaces.
On encountering a bad token, the parser proceeds until it finds
a synchronizing symbol (SEMICSYM, ENDSYM, ELSESYM, UNTILSYM).
Then it ignores all symbols of the current derivation ("pops the
stack") until continuation by the synchronizing token is

46

possible. Some tokens should not be passed during the synchron-
ization (PROCSYM, FUNCSYM, RECORDSYM, BEGINSYM, CASESYM,
REPEATSYM), because the essential program structure would be
lost. In such cases the compilation is halted. Semantic errors
are repaired quite thoroughly. A separate undefined type was
introduced for this purpose (see also UNDFIDNR in section 2.5).
However, in some cases the type might be constructed from the
context.

2.9. Example#5

The following sample program contains many errors which the
compiler detected and reported:

STMNR LEV NST SEMIC SOURCE CODE:

0 0 0 1 PROGRAM ERRONEOUS(INPUT);
0 1 0 1 (* This program tests error diagnostics
0 I 0 1 and error recovery *)
0 1 0 2 LABEL 1, 2, 1;
0 1 0 4 CONST C1='A'; C2='YZ';
0 1 0 6 TYPE SRl=C..'Z'; SR2=-5..0;
0 1 0 7 PTR=@REC2;
0 1 1 8 REC1=RECORD RFI, RF2: CHAR;
0 1 1 8 CASE PTR OF
0 1 1 9 'B': (RF3: @REC1);
0 1 1 9 'Z': (RFI: INTEGER)
0 1 1 10 END;
0 1 0 12 VAR Vi: BOOLEAN; V2: @RECl;
0 1 0 13 V3: (TRUE, FALSE);
0 1 0 13 V4: PACKED ARRAY (.SR1, (ONE, TWO).) OF
0 1 1 14 RECORD VF1: ONE..TWO;
0 1 2 16 VF2: RECORD VF3: @RECI; END;
0 1 1 17 END;
0 1 0 18 C2: INTEGER;
0 1 0 20 PROCEDURE P(A: SR2); FORWARD;
0 1 0 20 (*$S+ allow extented syntax *)
0 2 0 21 FUNCTION F(VAR P1, P2: BOOLEAN): 1..100;
0 1 0 22 FORWARD; (*$S- inhibit extensions *)
0 2 0 23 PROCEDURE P(A: SR2);
2 2 1 24 BEGIN NEW(V2, 'B');
3 2 1 24 3: IF TRUE
4 2 1 25 THEN V4(.C2, ONE.).VF2.VFS:=V2;
5 2 1 26 P(F(NOT Vi, Vi));
6 2 1 27 END;
8 1 1 28 BEGIN PUT;
9 1 1 28 FOR V4:=3 DOWNTO -5 DO
10 1 2 28 CASE V2@.RF1 OF
11 1 2 29 'A', 'B': PP(-23);
12 1 2 30 'C': GOTO 4;
13 1 2 32 'D', 'A':;;
14 2 2 32 'E': WITH V4(.C', THREE.), VF2 DO

47

15 3 2 33 VF3@.RF3@.RF1 SR2;
15 1 2 34 END;
16 1 1 35 IF F(V1)<>5 AND C1='''' THEN I:=I+l;
17 1 1 36 X:=5.E-7;
18 1 1 36 END.

REF IDENTIFIER CLASS, TYPE, REFERENCES: ***ERRONEOUS***

1 SLABELI SCALAR, LABEL 0 9999 (ORDERS ONLY) 2,
1 $LABEL2 SCALAR, LABEL 0 9999 (ORDERS ONLY)

24 $LABEL3 SCALAR, *** UNDEFINED ***
29 $LABEL4 SCALAR, *** UNDEFINED ***
18 A VARIABLE, INTEGER -5 .. 0 (ORDERS ONLY)
10 BOOLEAN TYPE, BOOLEAN 0 .. 1 (ORDERS ONLY) 20,
7 CHAR TYPE, CHAR 0 .. 255 (ORDERS ONLY)
2 Cl SCALAR, CHAR 0 .. 255 (ORDERS ONLY) 4, 34,
3 C2 SCALAR, PACKED ARRAY (. INTEGER 1 .. 2 (ORDERS ON

LY) .) OF CHAR 0 .. 255 (ORDERS ONLY) 18, 24,
20 F ENTRY(VAR, BOOLEAN 0 .. 1 (ORDERS ONLY) ; VAR, B

OOLEAN 0 .. 1 (ORDERS ONLY) ;) : INTEGER 1 .. 10
0 (ORDERS ONLY) *** UNRESOLVED FORWARD REFERENCE
*** 25, 34,

12 FALSE SCALAR, $IMPLT1 0 .. 1 (ORDERS ONLY)
0 INPUT VARIABLE, @INTEGER
9 INTEGER TYPE, INTEGER -2147483647 .. 2147483647 (ORDERS 0

NLY) 17,
13 ONE SCALAR, $IMPLT2 0 .. 1 (ORDERS ONLY) 13, 24,
27 OUTPUT VARIABLE, *** UNDEFINED ***
18 P ENTRY(INTEGER -5 .. 0 (ORDERS ONLY) ;) 23, 25,
28 PP ENTRY(INTEGER -2147483647 .. 2147483647 (ORDERS

ONLY) ;)
6 PTR TYPE, @REC2 8,
7 REC TYPE, RECORD RF2 :, RF1 :, RF3 :, RF1 :, 8, 11, 1

4,
6 REC2 TYPE, REC2 , * UNDEFINED ***
8 RF1 RECORD FIELD, CHAR 0 .. 255 (ORDERS ONLY) 28, 32,
9 RF1 RECORD FIELD, INTEGER -2147483647 .. 2147483647 (

ORDERS ONLY)
8 RF2 RECORD FIELD, CHAR 0 .. 255 (ORDERS ONLY)
8 RF3 RECORD FIELD, @REC1 32,
4 SRI TYPE, CHAR 193 .. 233 (ORDERS ONLY) 13,
5 SR2 TYPE, INTEGER -5 .. 0 (ORDERS ONLY) 18, 22, 32.,

32 THREE VARIABLE, *** UNDEFINED ***
12 TRUE SCALAR, $IMPLT1 0 1 (ORDERS ONLY) 24,
13 TWO SCALAR, $IMPLT2 0 1 (ORDERS ONLY) 13,
32 VF1 RECORD FIELD, $IMPLT2 0 1 (ORDERS ONLY)
14 VFI RECORD FIELD, $IMPLT2 0 1 (ORDERS ONLY)
32 VF2 RECORD FIELD, RECORD VF3 :, 32,
16 VF2 RECORD FIELD, RECORD VF3 :, 24,
32 VF3 RECORD FIELD, @REC1
15 VF3 RECORD FIELD, *REC1
10 Vi VARIABLE, BOOLEAN 0 .. 1 (ORDERS ONLY) 25, 25, 34

48

11 V2 VARIABLE, @REC1 23, 24, 28,
12 V3 VARIABLE, $IMPLT1 0 .. 1 (ORDERS ONLY)
13 V4 VARIABLE, PACKED ARRAY (. CHAR 193 .. 233 (ORDERS

ONLY) .) OF PACKED ARRAY (. $IMPLT2 0 .. 1 (ORDE
RS ONLY) .) OF RECORD VF1 :, VF2 :, 24, 28, 32,

35 X VARIABLE, *** UNDEFINED ***

ERRNR SEMIC COL ERROR MESSAGE LISTING: ***ERRONEOUS***

101 2 44 IDENTIFIER '$LABEL1 ' DECLARED TWICE
398 8 13 VARIANTS WILL BE TREATED AS RECORDS
110 8 44 TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE
101 9 11 TWO RECORDFIELDS 'RF1 '
104 10 5 IDENTIFIER 'REC2 ' UNDECLARED
101 18 44 IDENTIFIER 'C2 ' DECLARED TWICE
119 23 8 FORW. DCL.:MUST NOT REPEAT ARGUMENT LIST
398 24 44 TAGFIELDVALUES IN PROC. 'NEW' IGNORED
104 24 5 IDENTIFIER '$LABEL3 ' UNDECLARED
135 24 12 TYPE OF OPERAND MUST BE BOOLEAN
134 24 26 TYPE CONFLICT:'SCALAR ' VERSUS 'ARRAY
152 24 36 RECORD FIELD 'VF5 ' NOT FOUND
154 25 22 ACTUAL PARAMETER MUST BE A VARIABLE
134 26 23 TYPE CONFLICT:'SCALAR ' VERSUS 'SCALAR
104 28 44 IDENTIFIER 'OUTPUT ' UNDECLARED
143 28 11 ILLEGAL TYPE OF LOOP CONTROL VARIABLE
104 28 18 IDENTIFIER 'PP ' UNDECLARED
104 30 44 IDENTIFIER '$LABEL4 ' UNDECLARED
104 32 31 IDENTIFIER 'THREE ' UNDECLARED
103 33 44 IDENTIFIER 'SR2 ' OF WRONG CLASS
156 34 44 MULTIDEFINED CASE LABEL
126 34 12 ACTUAL NUMBER OF ARGUMENTS UNEQUALS DCL.
134 34 21 TYPE OF OPERAND(S) MUST BE BOOLEAN
25 34 21 THEN EXPECTED,BUT = FOUND
104 35 5 IDENTIFIER 'X ' UNDECLARED
201 35 7 ERROR IN REAL CONSTANT: DIGIT EXPECTED
398 35 7 REAL NUMBERS ARE NOT IMPLEMENTED
26 35 8 FACTORLIST STARTS WITH IDENTIFIER
167 36 44 UNSPECIFIED LABEL '4
167 36 44 UNSPECIFIED LABEL '2
167 36 44 UNSPECIFIED LABEL '1
117 36 44 UNSATISF. FORWARD REFERENCE 'F

2.10. Performance and Implementation Notes

The compiler is a single PASCAL program. It consists of
5400 lines of source code and its object module generated by the
PASCAL 8000 (RPI Version) compiler occupies 160K bytes of
storage, excluding a variable-sized run-time stack. The compiler
is structured into 102 procedures and functions. It took the
compiler 1.71 seconds to compile the program in section 1.16 on
an IBM 3033 machine running under the Michigan Terminal System.

49

The compiler program uses three external files: INPUT for
the program to be compiled, OUTPUT for compiler listings and
messages, and SPUNCH for the lambda-calculus code produced. Only
the first 100 characters of an input line are analyzed, and the
maximum number of characters on code lines is currently set to
72. But these numbers can be changed easily. The routines gener-
ating a cross-reference were added for debugging purposes only
and are coded rather inefficiently.

The following identifiers are pre-defined as in standard
PASCAL: BOOLEAN, CHAR, CHR, FALSE, GET, INTEGER, ORD, PRED, PUT,
REAL, SUCC, TRUE. INPUT or OUTPUT are files of INTEGER when
specified as program parameters.

During the development of the compiler, the parser was
actually generated automatically using a computer program. This
program employs recursive PASCAL procedures, one for each non-
terminal, in place of a pushdown stack [7]. Synthesized and
inherited attributes become variable and value parameters
respectively. A global switch is set if the parsing process
attempts to recover from an erroneous input token. In this case,
the body of a procedure is skipped if its corresponding symbol
is supposed to be popped of the stack. It should be noted that
this is just a method of coding an LL(l) parser and must not be
confused with recursive descent methods [9).

The compiler itself is successfully processed by the
parser.

I

50

REFERENCES

[1 Abdali, S.K. A Combinatory Logic Model of Programming Lan
guages. Univ. Of Wisconsin: Ph.D. Dissertation, 1974.

[21 Abdali, S.K. "A Lambda-calculus Model of Programming
Languages. Part I & II." J. Computer Languages 1, 4, pp.
287-320, 1976.

[31 Abdali, S.K. "CLONE" - a Combinatory Logic Normal Form
Evaluator. Rensselaer Polytechnic Institute: User Manual,
1978.

[41 Church, A. The Calculi of Lambda-Conversion. Princeton:
Princeton Univ. Press, 1941.

(51 Jensen, K., and Wirth, N. PASCAL User Manual and Report.
Lecture Notes in Comp. Sci. 18. Berlin-Heidelberg-New York:
Springer Verlag, 1974.

[6] Lewis, P.M., and Rosenkrantz, D.J. "An ALGOL Compiler Using
Automata Theory." General Electric: Repport #71-C-176,
1971.

[71 Lewis, P.M., Rosenkrantz, D.J., and Stearns, R.E. Compiler
Design Theory. Reading, MA: Addison-Wesley Publishing Com-
pany, 1976.

[81 Morris, J.H. Lambda-Calculus Models of Programming Langua
ges. Massachussetts Institute of Technology: Ph.D. Disser-
tation, 1968.

[91 Nori, K.V., Amman, U., Jensen, K., and Naegli, H.H. Th P
Compiler: Implementation Notes. ETH Zuerich: Technical Re-
port #10, 1974.

[101 Petznik, G.W. Introduction to Combibatory Logic. In: Brain-
erd, W.S., and Landweber, L.H. Theory of Computation. New
York: John Wiley & Sons Inc., 1974.

[111 Wirth, N. "The Design of a PASCAL Compiler." Software Prac
tice and Experience 1, 4, pp. 309-333, 1971.

Lll

,, iii , I H i l I

Unclassified
*ECUfITY CLASSIFICATION OF THIS PAGE ("ongi Data Euitered)_________________
&_ READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I.PORT NUNS 6111 2. GOVT ACCESSION NO: S. RECIPIENT'S CATALOG NUMBER

CS-8103 1A - ___________

4 TITLE (and Subtitle)S.YEORERT&PIDCVRD

AN ATTRIBUTED LL(l) COMPILATION OF Technical Report
PASCAL INTO THE LAMBDA-CALCULUS S. PERFORMING ORG. REPORT NUMBER

7. AUTHORfa) S. CONTRACT 00 GRANT NUWEER(s)

Erich Kaltofen ONR N00014-75-C-1026
S. jKamal Abdali

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRO.GRAM EL1MENT. ,PROJECT:,. TASK
ARE A a WORK UNIT NUMBS

Mathematical Sciences Department
Rensselaer Polytechnic Institute
Troy, N.Y. 12191

ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATS

Office of Naval Research Resident __ in__1___)A1___
Representative13NM8ROPAE

715 Broadway-5th Floor, N.Y., N.Y. 10003 51
Is. MONITORING AGENCY NAME & AODRESS(il different train Conltrolling Office) It. SECURITY CLASS. (of Chia ,epont)

Unclassified
to.. DECL ASSI FICATION/ DOWNGRDN

SCHEDU LE

ill. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A

Approved for public release.

I's. uia, t m u i oui. as ss ww jaiu~ IoU sm e ro . ac ervr in zioca, du. it different how Aspent)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continuei en reverse side it necessary and identifty by block niambot)

Lambda-calculus, lambda-expression, verification of Pascal

programs, Compiler design

S. ABSTRACT (Conflnue an torivise aide it nosaeeamvst And Udeait' by Seek nmhie)

(see back-side of page)

DO00 , 1473 61111TI@@OF I NvSIGOo nLiETE Unclassified
S/k 102-F-04-66S 8CURITY CLASBIPICATION OP TWIS8 PAGE f=RDoN a t h ss*

Unclassified
SECURITY CLASSIFICATION OF 'HIS PAGE (Won Dee. EnteredO

A Pascal compiler is described whose target language is

the lambda-calculus instead of some machine code. Although

the lambda-calculus code generated by this compiler can be

executed by means of a lambda-expression reducer, the intended

use of the translation is in proving programs correct. The

compiler is written in Pascal itself, and contains an attri-

buted LL(l) parser of the complete standard Pascal language.

The error recovery is quite elaborate. The code generalization

is done for a large subset of the language, covering:

assignments, compound, conditional and repetitive statements,

procedures including recursive calls and global side effects,

multidimensional arrays.

This report contains a formal definition of the target

language, a lambda-calculus model for the selected subset of

Pascal, and a code-independent description of compilation

algorithms including the complete LL(l) push-down automaton.

Unclassified
SECURITY CLAWICATION o0rHIS pAGSnmea Doe Me

